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Direct-Estimation Algorithm for Mapping Daily
Land-Surface Broadband Albedo

From MODIS Data
Ying Qu, Qiang Liu, Shunlin Liang, Fellow, IEEE, Lizhao Wang, Nanfeng Liu, and Suhong Liu

Abstract— Land surface albedo is a critical parameter in
surface-energy budget studies. Over the past several decades,
many albedo products are generated from remote-sensing
data sets. The Moderate Resolution Imaging Spectroradiome-
ter (MODIS) bidirectional reflectance distribution function
(BRDF)/Albedo algorithm is used to routinely produce eight day
(16-day composite), 1-km resolution MODIS albedo products.
When some natural processes or human activities occur, the
land-surface broadband albedo can change rapidly, so it is
necessary to enhance the temporal resolution of albedo product.
We present a direct-estimation algorithm for mapping daily land-
surface broadband albedo from MODIS data. The polarization
and directionality of the Earth’s reflectance-3/polarization and
anisotropy of reflectances for atmospheric sciences coupled with
observations from a Lidar BRDF database is employed as a
training data set, and the 6S atmospheric radiative transfer code
is used to simulate the top-of-atmosphere (TOA) reflectances.
Then a relationship between TOA reflectances and land-surface
broadband albedos is developed using an angular bin regression
method. The robustness of this method for different angular bins,
aerosol conditions, and land-cover types is analyzed. Simulation
results show that the absolute error of this algorithm is ∼0.009
for vegetation, 0.012 for soil, and 0.030 for snow/ice. Validation of
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the direct-estimation algorithm against in situ measurement data
shows that the proposed method is capable of characterizing the
temporal variation of albedo, especially when the land-surface
BRDF changes rapidly.

Index Terms— Angular bin regression, direct-estimation
algorithm, land-surface broadband albedo, Moderate Resolution
Imaging Spectroradiometer (MODIS), polarization and direc-
tionality of the Earth’s reflectance (POLDER) bidirectional
reflectance distribution function (BRDF) database.

I. INTRODUCTION

LAND surface albedo, defined as the fraction of inci-
dent solar radiation (0.3–5.0 μm) reflected by land

surfaces [1], [2], is one of the most important parameters
in general circulation models, hydrology models, numerical
weather models, and surface-radiation-budget studies.

There are several projects focused on monitoring the spatio-
temporal variations of land-surface albedo at observation sites
distributed throughout the world. However, it is not sufficient
to use these data directly in climate models. Because different
climate models compute albedo differently, their estimates can
differ significantly [3]. Simultaneously, satellite observations
can provide a global albedo product with higher spatial and
temporal resolution, which is more suitable for global-change
studies.

Over the past several decades, many albedo products
with spatial resolutions of 500 m to 20 km and temporal
frequencies ranging from daily to monthly are produced
from different remote-sensing data sets, such as the
Moderate Resolution Imaging Spectroradiometer (MODIS)
[4]–[6], polarization and directionality of the Earth’s
reflectance (POLDER) [7]–[11], Medium Resolution Imaging
Spectrometer (MERIS) [12], Clouds and the Earth’s Radiant
Energy System (CERES) [13], Meteosat Second Generation
(MSG) [14], [15] and meteosat [16]–[20].

The MODIS bidirectional reflectance distribution function
(BRDF)/Albedo algorithm [6] is routinely used for producing
the MCD43 series of albedo products. The MODIS 1-km
broadband albedo product is produced by inverting multidate,
multiangular, cloud-free, atmospherically corrected surface
reflectances acquired by the MODIS instrument onboard the
Terra and Aqua satellites. In general, it is carried out in three
steps: 1) atmospheric correction; 2) surface angular modeling;
and 3) narrowband-to-broadband albedo conversions. Each
step has an explicit physical foundation. However, the errors
from each step may accumulate and affect the accuracy of the
final albedo product. For example, the atmospheric correction
of the MODIS top-of-atmosphere (TOA) reflectance depends
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on the performance of the aerosol retrieval algorithm. When
the algorithm for estimating the aerosol optical depth (AOD)
is not applicable (e.g., no “dark objects” can be found in the
scene), the atmospheric-corrected reflectance product can be
unreliable [21].

The temporal resolution of the MCD43B3 collection five
products is eight days, and the temporal resolution of a
newly proposed product called the “direct broadcast” albedo
product [22] is daily. However, all of these products are based
on a 16-day cycle’s observed data. This observation strategy
assumes that the land-surface reflectance signature does not
change during the 16-day cycle, which is not always valid.
For instance, when several natural processes (e.g., snowfall,
snowmelt, precipitation, and vegetation growth) and human
activities (e.g., clearing and planting forests, sowing and
harvesting crops, burning rangeland) occur, the land surface
albedo can change rapidly [23]. In other words, the algorithms
based on multidate observations cannot capture phenomena
with rapidly changing albedos.

The alternative is to develop an empirical relationship
between the TOA reflectances and surface broadband albe-
dos [24]–[26]. This method produces a daily albedo prod-
uct using just one scene of MODIS data in each retrieval
process, which is usually called the direct-estimation algo-
rithm. Liang et al. [24] used the MODTRAN package to
simulate TOA reflectances under the Lambertian assump-
tion, and they obtained a relationship between MODIS TOA
reflectances and broadband albedos by using a neural network
method. Liang [25] used the projection pursuit regression
method. However, these two studies did not consider the
anisotropy of the land surface. Liang et al. [26] further
improved it for estimating daily land surface albedo of the
Greenland ice sheet from MODIS data. They used the discrete
ordinates radiative transfer program for a multilayered plane-
parallel medium to simulate TOA reflectances of snow/ice
and then developed the relationship between bidirectional
TOA reflectances and broadband albedos using an empirical
training method; they divided the solar/view geometry space
into angular bins and calculated the regression coefficients of
each angular bin using a linear regression method.

Cui et al. [27] used the POLDER-2 BRDF database to
develop a relationship between surface reflectances and broad-
band albedos using simple linear regression at different solar
zenith angles (SZAs) and phase angles. This method can be
considered an anisotropy-correction method, which is very
accurate for snow/ice-free land surfaces under clear-sky con-
ditions.

In this paper, we developed a new direct-estimation algo-
rithm by employing the 6S (second simulation of a satellite
signal in the solar spectrum) atmospheric radiative transfer
code [28] to simulate the TOA directional reflectances, cal-
culating the broadband albedos based on the POLDER BRDF
data set, and then establishing a relationship between the TOA
reflectances and surface broadband albedos using an angular
bin regression method.

II. METHODOLOGY

The direct-estimation algorithm is an empirical method
of estimating broadband land surface albedo based on the
BRDF database. To develop a statistical relationship between

Fig. 1. Flow chart to derive the coefficients for the direct-estimation
algorithm.

satellite-observed TOA directional reflectances and the land-
surface broadband albedos, a training data set is needed. To
this end, we initially constructed a surface BRDF database
and then simulated the TOA directional reflectances with the
atmospheric radiative transfer model. The broadband albedos
are derived from narrowband albedos calculated by a revised
linear kernel-driven model. Finally, a relationship between
TOA directional reflectances and broadband albedos is devel-
oped using an angular bin regression method. The essential
part of the algorithm is to derive the empirical regression
coefficients for each of the angular bin, and then it is very
simple to use these coefficients to estimate broadband albedo
from MODIS observations. The flow chart for the regression
coefficients is shown in Fig. 1.

In the following sections, we initially address the issue of
building the training data set and the atmospheric radiative
transfer model, and then provide a detailed description of the
angular bin regression method.

A. Training Data Set

1) POLDER-3/Polarization and Anisotropy of Reflectances
for Atmospheric Sciences Coupled With Observations From
a Lidar BRDF Database: In [25] and [29], the data sets of
field or laboratory spectra are used to represent the reflectance
properties of different types of land surfaces. However, the
reflectance anisotropy of land-surface objects are not consid-
ered. The BRDF database is needed as a prior knowledge
to compute the land-surface broadband albedos using the
TOA directional reflectances observed by satellite sensors.
Unfortunately, the ground-measured data are not suitable for
direct comparison with satellite acquired data, as the scale of
the ground-measured data is not compatible with the satellite
data, and currently there are not enough ground-measured
BRDF data sets to represent all the various land-cover types in
a global scope. Therefore, the satellite directional observation
data set is more suitable for training data in our paper. To
the best of our knowledge, the POLDER BRDF database pro-
duced by POSTEL service center/MEDIAS-France is an ideal
anisotropy reflectance database that meets our requirements.

The POLDER-3/polarization and anisotropy of reflectances
for atmospheric sciences coupled with observations from
a Lidar (PARASOL) BRDF database can be down-loaded
from the internet: (URL: http://postel.mediasfrance.org/en/
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BIOGEOPHYSICAL-PRODUCTS/BRDF). The POLDER-3
radiometer onboard the CNES/Parasol satellite provides mul-
tidirectional measurements of the Earth reflectances at six
bands (the center wavelengths are 490, 565, 670, 765, 865,
and 1020 nm). In each overpass of the satellite, the POLDER
instrument acquires up to 16 reflectance measurements of
land surfaces from different directions, with a maximum view
zenith angle (VZA) of 70°. The directional reflectance is
corrected for molecular and aerosols scattering, as well as
atmospheric absorption [10], [30]. Each sample (pixel) of
the BRDF database is an accumulation set of one-month
atmospheric-corrected bidirectional reflectance factors (BRFs)
from different satellite overpasses. For each sample, 80–500
angular samplings semihomogenously distributed in the view-
ing hemisphere can be obtained. The samples of POLDER-
3/PARASOL BRDF database are selected through a series of
selection procedures. These selection procedures are carried
out in three steps: 1) the selection of thematically homoge-
neous pixels, according to the land-cover map [the land-cover
classification scheme of the international geosphere-biosphere
program (IGBP)] or GLC2000 (global land cover map for
the year 2000); 2) a preselection procedure according to the
quality of the inversion of the reflectance model against one
month of data for removing the noisiest BRDFs and those
with few observations; and 3) the final selection procedure
that accounts for the quality of the reflectance model inversion
over one single orbit.

There are two significant improvements in the most recent
version of POLDER database (POLDER-3/PARASOL BRDF
database): 1) POLDER-3 BRDF data are acquired over 12
months from November 2005 to October 2006 whereas
POLDER-1 and 2 BRDF data are acquired over eight and
seven months, respectively, and data from a full year pro-
vide a much better representation of the seasonal variations
of land surface albedo, and 2) the POLDER-3 instrument
is onboard the microsatellite PARASOL. The POLDER-
3/PARASOL BRDF database contains 13 887 samples (pixels)
that present different landscapes at different locations with
a spatial resolution of 6 km. Each sample of the data set
is composited using monthly observed data. The data set
contains all types of IGBP classes, and it is distributed widely
throughout the world.

2) Interpolation and Extrapolation for the BRDF Database:
When the SZA is 60° or 20°, the observations are particularly
rare, so the POLDER-3/PARASOL database need to be inter-
polated and extrapolated to build the complete training data
set. The most acknowledged method of fitting and predicting
BRDF is the linear kernel-driven model [31], [32], in which
the BRF is expressed as follows:

R(θs , θv , ϕ; λ) = fiso(λ) + fvol(λ)kvol(θs, θv , ϕ)

+ fgeo(λ)kgeo(θs, θv , ϕ) (1)

where θs is SZA; θv is VZA; ϕ is relative azimuth angle
(RAA); λ is the wavelength; and kvol and kgeo are the volume
scattering and geo-optical kernels, respectively; fiso, fvol, and
fgeo are the coefficients of isotropic, volume scattering, and
geo-optical kernel, respectively.

The original linear kernel-driven model proposed by
Wanner et al. [31] is especially suitable for accounting the
backward-scattering effect of the directional reflectance from

vegetation canopy. Because of the strong forward-scattering
effects of directional reflectances of snow/ice in the polar
area [33], a forward-scattering kernel is needed. After exten-
sive comparisons of several different models, we revise the
original linear kernel-driven model as follows:

R(θs, θv , ϕ; λ) = fiso(λ) + fvol(λ)kvol(θs, θv , ϕ)

+ fgeo(λ)kgeo(θs, θv , ϕ) + ffwd(λ)kfwd(θs, θv , ϕ) (2)

where kfwd(θs, θv , ϕ) and ffwd(λ) are the forward-scattering
kernel and its coefficients, respectively. A revised Ross-Thick
kernel that accounts for the hot-spot effect [11] is used as the
volume scattering kernel, and the Li-Sparse-R kernel [34] is
used as the geometry optical kernel. The forward-scattering
kernel is added to describe the forward-scattering effects for
snow surfaces and is derived by simplifying the Rahman–
Pinty–Verstraete model [35] and fixing the parameters to
typical values

kfwd(θs, θv , ϕ) = cosk−1 θs cosk−1 θv

(cos θs + cos θv)1−k

· 1 − g2

(1 + g2 − 2g cos(π − ξ))3/2 − 1 + g

21−k(1 − g)2 (3)

where g = 0.0667 and k = 0.846. cos ξ = cos θs cos θv +
sin θs sin θv cos φ.

The BRF measurements are used to retrieve the kernel
parameters of (2), which are then applied to interpolate and
extrapolate the BRDF data to an arbitrary incident/view angle.
The uncertainties of the interpolations and extrapolations
increase as the solar/VZA increases, and the maximum root-
mean-square error (RMSE) is ∼0.005. Although the quality
control of the POLDER-3 BRDF database is very efficient,
we found that the consistency of several BRDF samples is not
good because of the BRDF characteristic changes during the
one-month collection period (e.g., snow fall and snow melt
processes, soil moisture changes). To screen out the data sets
that are not suitable for our study, the following criteria are
adopted:

1) γ490 < 0.01 and γ490/μ490 < 0.3;
2) γtotal < 0.1 and γtotal/μtotal < 0.2;
3) the number of orbits is >4, and the total observation

number is >80.
Here, γ490 is the RMSE of the fitting result for POLDER

band one, which is centered at 490 nm; γtotal is the sum RMSE
of the fitting result for six bands (490, 565, 670, 765, 865,
and 1020 nm); μ490 is the mean value of the reflectance at
490 nm; and μtotal is the mean value across all the six bands
(490, 565, 670, 765, 865, and 1020 nm). When the data is
contaminated by clouds, or there is drastic change in surface
properties (such as before and after snow), the value of γtotal
and γ490 is usually much higher than usual. The third criterion
screens out data sets with insufficient sample numbers. All of
these thresholds are empirical coefficients that are determined
by visual interpretation. After this process, the data of 4863
pixels are screened out, and the remaining 9024 pixels are
employed in the following steps.

3) Band Conversions From POLDER to MODIS: The direc-
tional reflectances at MODIS bands are needed in this paper.
Because reflectances at different wavelengths are highly cor-
related [36], the band conversions from POLDER to MODIS
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TABLE I

BAND CONVERSION COEFFICIENTS (FROM POLDER TO MODIS)

c1 c2 c3 c4 c5 c6 c0
Band Name POLDER- POLDER- POLDER- POLDER- POLDER- POLDER- (offset) RMSE

(490 nm) (565 nm) (670 nm) (765 nm) (865 nm) (1020 nm)
MODIS (648 nm) 0.025804 0.310757 0.686464 −0.039359 −0.013607 0.03182 0.004839 0.003081
MODIS (859 nm) 0.025002 −0.027624 −0.011339 0.26367 0.701168 0.05768 0.000611 0.00339
MODIS (466 nm) 0.91419 0.141745 −0.060689 0.013902 0.010337 −0.022371 −0.007441 0.004179
MODIS (554 nm) 0.205108 0.610729 0.125942 0.11475 −0.01769 −0.046839 −0.001009 0.004307

MODIS (1244 nm) −0.372893 0.016735 0.406773 −0.205036 −0.450877 1.432253 0.023339 0.021808
MODIS (1631 nm) −1.062408 −0.380808 1.514777 −0.370976 −0.53941 1.169188 0.073113 0.043379
MODIS (2119 nm) −1.177391 −0.444721 1.798923 −0.303519 −0.517468 0.818367 0.072311 0.048518

can be achieved through a statistical approach

ρMODIS(λi ) = c0 +
n∑

j=1

c jρPOLDER(λ j ) (4)

where ρMODIS(λi ) are the MODIS reflectances at λi ,
ρPOLDER(λ j ) are the POLDER-3 reflectances at λ j , c0 is
the intersection term, and c j are the conversions coeffi-
cients. The intersection terms and coefficients are derived
by linear regression using the following ground-measured
spectral data sets: spectral reflectance data presented in
quantitative remote sensing of land surfaces [37] (119 sam-
ples), the spectral library of Beijing Normal University
(URL: http://spl.bnu.edu.cn, 224 samples), the database of
watershed allied telemetry experimental research (WATER)
Experiment (URL: http://westdc.westgis.ac.cn/water/zy, 103
samples), and the snow reflectance data set measured in
Greenland (47 samples). The coefficients and RMSE values
of the regression function are shown in Table I. The RMSE
values of the visible-infrared bands of MODIS (648, 859, 466,
and 544 nm) are smaller than those of the short-wave infrared
bands of MODIS (1244, 1631, and 2119 nm), because the
POLDER instrument does not have the shortwave infrared
bands. Thus, the bands at 1244, 1631, and 2119 nm are not
used in our regression analysis approach because the band-
conversion errors for these bands are large.

4) Method for Deriving Broadband Albedos: The instanta-
neous albedo (blue-sky albedo) can be expressed in the form
of [5] and [38]

α(θs , λ) = αbs(θs, λ)(1 − D(θs, τ (λ))) + αws(λ)D(θs , τ (λ))
(5)

where α(θs) is the actual albedo at wavelength λ, D(θs , τ (λ))
is the fraction of diffuse skylight when the SZA is θs , τ (λ)
is the AOD at wavelength λ, αbs is the black-sky albedo
(directional-hemispheric albedo), and αws is the white-sky
albedo (bihemispheric albedo). The fraction of diffuse skylight
changes with SZA, AOD, bands, and aerosol model types. It
can be calculated by a predetermined look up table (LUT)
based on 6S atmospheric radiative transfer code.

If the BRDF is retrieved by the linear kernel-driven model,
the black-sky and white-sky albedos can be calculated as

follows [5]:

αbs(θs, λ) =
∑

k

fk(λ)hk(θs) (6)

αws(λ) =
∑

k

fk(λ)Hk (7)

where hk(θs) is the integral of kernels k over view hemisphere
when the SZA isθs , and Hk is the integral of hk(θs) over
incidence hemisphere. fk are the coefficients of linear kernel-
driven model kernels k.

The narrowband-to-broadband conversions can be expressed
by [29]

α = c0 +
n∑

i=1

ciα(λi ) (8)

where α is the broadband albedo, α(λ) is the spectral (narrow-
band) albedo, and ci (i = 0, 1, . . . , n, where n is the number
of bands) are the coefficients for band conversions. The
conversion coefficients (Table II) for narrowband-to-broadband
conversions are derived in several previous studies [29], [39].

B. Atmospheric Radiative Transfer Simulation

In this paper, the 6S atmospheric radiative transfer code
is used to simulate the TOA directional reflectances. To
avoid extremely large computations, we did not use the 6S
module directly. Instead, a fast and accurate approximation
method proposed by Qin [40] is chosen to simulate the TOA
directional reflectances. This method is especially suitable for
simulating the atmospheric effects over nonlambertian land
surfaces. To eliminate the effects of water vapor absorption, the
original equation is reformulated based on the 6S atmospheric
radiative transfer code [28] as in (9), shown at the bottom of
this page, where the matrices T (θs), R(θs , θv , ϕ), and T (θv)
are defined as

T (θs) = [tdd(θs) tdh(θs)] , T (θv) =
[

tdd(θv)
thd(θv)

]

R(i, v) =
[

rdd(θs, θv , ϕ) rdh(θs, ϕs)
rhd(θv , ϕv ) rhh

]
.

Subscripts s and v stand for solar illumination and
viewing direction, respectively; θs , θv , ϕs , ϕv , and ϕ are

ρTOA(θs, θv , ϕ) = tH2O ×
[
ρ0(θs, θv , ϕ) + T (θs) · R(θs , θv , ϕ) · T (θv) − tdd(θs) · tdd(θv) · |R(θs , θv , ϕ)| · ρ

1 − rhhρ

]
(9)
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TABLE II

NARROWBAND-TO-BROADBAND CONVERSION COEFFICIENTS

MODIS Bands (μm) c0 c1 c2 c3 c4 c5 c6 c7
(offset) (0.62–0.67) (0.84–0.87) (0.46–0.48) (0.54–0.56) (1.23–1.25) (1.63–1.65) (2.11–2.15)

Snow/ice free −0.0015 0.1600 0.2910 0.2430 0.1160 0.1120 0.0000 0.0810
Snow/ice −0.0093 0.1574 0.2789 0.3829 0.0000 0.1131 0.0000 0.0694

TABLE III

INPUT SETTINGS FOR PARAMETERS OF 6S ATMOSPHERIC RADIATIVE TRANSFER CODE

Parameters Input Settings

Atmospheric type Tropical, Midlatitude Summer, Midlatitude Winter, Subarctic Summer, Subarctic Winter, US62
Aerosol type Continental, Maritime, Urban, Desert, Biomass burning, Haze

AOD 0.1, 0.2, 0.25, 0.3, 0.35, 0.4
Target altitude 0, 0.5, 1.0, 1.5, 2.0, 2.5, 3, 3.5 (km)
Solar zenith 0, 4, 8, . . ., 76, 80 (degree)
View zenith 0, 4, 8, . . ., 60, 64 (degree)

Relative azimuth 0, 20, 40, . . ., 160, 180 (degree)

the SZA, VZA, solar azimuth angle, view azimuth angle,
and RAA, respectively; and t and r represent transmit-
tance and reflectance, respectively; ρTOA(θs, θv , ϕ) is the
TOA directional reflectance; ρ0(θs, θv , ϕ) is the path scat-
tering reflectance of the atmosphere; tH2O is the trans-
mittance of the water vapor; ρ is the spherical albedo
of the atmosphere. The subscripts h and d stand for
hemispheric (diffuse) and directional (direct), respectively,
and the four combinations of these two symbols dd , dh,
hd , and hh stand for bidirectional, directional-hemispheric,
hemispheric-directional, and bihemisphere, respectively. Thus,
tdd(θs) and tdd(θv) are the downward and upward bidi-
rectional path transmittances, respectively; and tdh(θs) and
thd (θv) are the directional-to-hemispheric path transmittance
and the hemispheric-to-directional transmittance, respectively.
rdd(θs, θv , ϕ), rdh(θs, ϕs), rhd(θv , ϕv ), and rhh are the
surface bidirectional reflectance, directional-to-hemispheric
reflectance, hemispheric-to-directional reflectance and bi-
hemispheric reflectance (BHR), respectively. The values of
rdh(θs, ϕs), rhd (θv , ϕv), and rhh are calculated using the
POLDER-3/PARASOL BRDF database, and the values of
ρ0(θs, θv , ϕ), tdh(θs), thd (θv), tdd(θs), tdd(θv), ρ, and tH2O
are acquired using a LUT produced by the 6S atmospheric
radiative transfer code.

In this paper, the 6S radiative transfer code is selected as a
tool for developing the LUT, which contains the atmospheric
parameters used in (9). The LUT has seven dimensions:
atmosphere type, aerosol type, AOD, target elevation, SZA,
VZA, and RAA. The input parameters for the 6S code are
set as follows (Table III): six atmosphere types (tropical,
midlatitude summer, midlatitude winter, subarctic summer,
subarctic winter, and US62 standard) and six aerosol types
(continental, maritime, urban, desert, biomass burning, and
haze). Haze is a user defined aerosol type, where the fraction of
four aerosol particles–dust, water soluble, soot, and oceanic–is
15%, 75%, 10%, and 0%. The amount of water vapor is set
to the default value, and the AOD at 550 nm is set to 0.1,
0.2, 0.25, 0.3, 0.35, and 0.4, which corresponds to a range
from clear to relatively turbid aerosol loading conditions. The
target altitude (land-surface elevation) varies from 0 to 3.5 km
in increments of 0.5 km; the SZA varies from 0° to 80°, and

the VZA varies from 0° to 64°, both in 4° increments. The
RAA varies from 0° to 180° in increments of 20°.

C. Angular Bin Regression Analysis

We used an angular bin regression approach to link the
TOA directional reflectances to surface broadband albedos.
To account for the anisotropy in TOA reflectance, the space of
solar/view-geometry is divided into 3-D grids according to the
ranges of solar zenith, view zenith, and relative azimuth. Each
grid is referred to as an angular bin. Regression coefficients
between broadband albedo and directional TOA reflectance are
derived at each angular bin. As the size of the bin decreases,
the RMSE of the fitting result decreases. Finally, the size of
4° × 4° × 20° is chosen for this paper, and the fitting results
are good over most of the angular bins. The central angle
of the SZA varies from 0° to 80°, in 4° increments (the solar
zenith angular bins are 0°–2°, 2°–6°, …, 78°–82°). The central
angle of the VZA varies from 0° to 64°, in 4° increments
(the view zenith angular bins are 0°–2°, 2°–6°, …, 62°–66°);
the central angle of the RAA varies from 0° to 180° in 20°
increments (the relative azimuth angular bins are — 10°–
10°, 10°–30°, …, 170°–190°). In each angular bin, the TOA
directional reflectances at different atmospheric conditions are
simulated according to (9), and the kernel coefficients inverted
by the POLDER-3/PARASOL BRDF are used to estimate the
land-surface broadband albedos and the parameters used in (9).

Because the BRDF characteristics of different land surfaces
are different, the data of the POLDER-3 BRDF database need
to be classified before the regression analysis. We do not
want to use a complex classification system such as IGBP
or GLC2000, because they are not based on instantaneous
state of the surface. For example, when grassland is covered
with seasonal snow, its state is still grassland in the IGBP or
GLC2000 systems, so the albedo change cannot be reflected.
Instead, we classified the data set of only three major classes
are considered: vegetation, soil, and snow/ice. However, to
make a smooth transition between the major classes, we
adopted the following strategy when building the training data
sets. Initially, we divided the data sets into five parts: pure
vegetation, pure bare soil, pure snow/ice, intermediate class A,
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TABLE IV

CLASSIFICATION CRITERIA FOR THE POLDER BRDF DATABASE

Criterions Class Samples

0.22 < N DV I < 1 Pure vegetation 4637

−1 < N DV I < 0.15 and 0 < r490 < 0.25 Pure soil 2401

r490 > 0.4 Pure snow/ice 627

0.15 < N DV I < 0.22 Intermediate class A 1136

0.25 < r490 < 0.4 Intermediate class B 123

N DV I is an abbreviation for normalized difference vegetation index, and r490 is the directional reflectance at wavelength of 490 nm

Fig. 2. Classification for POLDER-3/PARASOL BRDF database.

and intermediate class B (the classification criteria are shown
in Table IV and Fig. 2). Then we merged them into three
classes: vegetation (pure vegetation + intermediate class A),
soil (pure soil + intermediate class A + intermediate class
B), and snow/ice (pure snow/ice + intermediate class B). In
the angular bin regression procedure, the data sets of different
classes are analyzed separately.

The relationship between TOA directional reflectances and
broadband albedos can be expressed by

αws = m0 +
n∑

i=1

miρi (θs, θv , ϕ) (10)

αbs(θs(k)) = n0(k) +
n∑

i=1

ni (k)ρi (θs, θv , ϕ) (11)

where αws is the broadband white-sky albedo; αbs(θs(k)) is the
broadband black-sky albedo; θ s(k) is the SZA, which varies
from 0° to 80° in increments of 5°; θs(k) = 0, 5, . . . , 75, 80;
k = 1, 2, 3, . . . , 16, 17; i = 1, 2, 3, and 4, representing the
MODIS bands 648, 859, 466, and 544 nm, respectively; m0
and n0(k) are the intersection terms of the regression equation,
mi and ni (k) are the coefficients of the regression equation,
the intersection terms and coefficients are used for differ-
ent angular bins and land-cover classes. ρi (θs, θv , ϕ) is the
TOA directional reflectance derived from ρTOA

i (θs, θv , ϕ), and
ρi(θs, θv , ϕ) is derived from the TOA directional reflectance
by eliminating the water vapor absorption

ρi (θs, θv , ϕ) = ρTOA
i (θs, θv , ϕ)/tH2O (12)

where ρTOA
i (θs, θv , ϕ) is the TOA reflectance, and tH2O is the

atmospheric water vapor transmittance in both the upward and
downward directions.

III. RESULTS

A. Analysis Based on the Simulated Data set

We examined the accuracy dependencies of the angular
bin regression method for different angular bins, aerosol
conditions, and land-cover types. For simplicity, the broadband
albedos calculated by integrating the estimated results of the
revised linear kernel-driven model are referred to as “reference
albedo,” and the broadband albedos calculated by the angular
bin regression model are referred to as “estimated albedo.”
Two statistical parameters R2 (coefficient of determination)
and RMSE are selected to evaluate the robustness of the
angular bin regression method.

1) Accuracy Dependencies on Different Bin Sizes and
Solar/View Angles: Because the directional reflectance prop-
erties of land surfaces and the atmospheric parameters varies
with the solar/view angles, the fitting results of different sizes
of angular bins are different. Fig. 3 shows the average fitting
RMSE with different bin sizes of VZA (4° to 64° with 4°
incensement) at three different SZAs [SZA = 20°, 40°, and
60°; RAA = 100°]. In all of the three SZAs, fitting RMSE
decreases along with the bin size of VZA, indicating that the
angular bin method is more accurate with smaller bins. On
the other hand, smaller bin size means more computational
resources. So, a compromise is inevitable. In general, 4° to
10° is adequate bin size for VZA and SZA to get reasonably
good regression result. And the adequate bin size of RAA can
be much larger than that of SZA and VZA (∼ 20° to 60°).

Although the direct-estimation algorithm can make adjust-
ment for the surface anisotropy effect through angular bin
division, the sun/view geometry still has an influence on the
accuracy of the retrieved broadband albedo. The dependencies
of this method on different solar/view angles are examined
based on the simulated TOA BRDF data set, where there are
277 104 samples (5773 BRDF samples × 48 atmospheric con-
ditions) in each angular bin; the land-cover type is vegetation;
and the aerosol type is continental. In the principle plane,
among 357 angular bins at 21 SZAs and 17 VZAs, the R2

values for 303 angular bins (84.9%) are larger than 0.9, and
the RMSE values for 312 angular bins (87.4%) are < 0.01.
The fitting results show that the angular bin regression model
has a strong ability to fit the data set of different angular bins.

The distribution of fitting R2 in the view angle hemisphere
is shown in Fig. 4, with SZA at 20°, 40°, and 60°. At the
different SZAs (20°, 40°, and 60°), the distribution patterns
of fitting R2 are similar. At the angles near the backward
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Fig. 3. Fitting RMSE with different bin size of VZA (SZA = 20°, 40°, and
60°; RAA = 100°). Land-cover type: vegetation. Aerosol type: continental.

direction of the principal plane (RAA = 0°), R2 increases as
the VZA increases. At the angles near the forward direction of
the principal plane (RAA = 180°), R2 decreases as the VZA
increases. The smallest R2 occurs at the hot spot (RAA = 0°;
when SZA = 20°, 40°, and 60°, VZA = 20°, 40°, and 60°),
and the largest R2 occurs at the larger VZA at perpendicular
to the principal plane (RAA = 90°). In most cases, the
angular bin regression method yields good results for different
solar/view angles.

2) Accuracy Dependencies on Different Aerosol Conditions:
The dependencies of the angular bin method on different
aerosol types (continental, maritime, urban, desert, biomass
burning, and haze) are examined. Fig. 5 shows the scatter
plot of reference albedo and estimated albedo at six different
aerosol types. The fitting result is good except the aerosol
type of urban. When the aerosol type is urban, the estimation
accuracy is seriously affected by the aerosol loadings,
especially when the broadband albedo of land surfaces is >
0.5. For the other aerosol types, the estimation accuracy has
no significant difference.

Fig. 6 shows the scatter plot of reference albedo and esti-
mated albedo at different aerosol loadings (AOD = 0.10, 0.20,
0.30, and 0.40). The simulation results show that the angular
bin regression method has little dependency on aerosol load-
ings when the aerosol type is continental. The capability of the
angular bin regression method is similar to that of atmospheric
correction using the full 6S atmospheric radiative transfer
code. The albedos estimated using the angular bin regression
model are quite consistent with the albedos calculated by
integrating the revised linear kernel-driven coefficients, and
most of the points cluster around the diagonal.

3) Accuracy Dependencies on Different Land-Cover Types:
In Section II-C, the land observations are classified into veg-
etation, soil, and snow according to their spectral difference.
The fitting results of different land-cover types of one of the
angular bin are shown in Fig. 7. For this angular bin, the

(a) 

(c) 

(b)

Fig. 4. Distribution of fitting R2 in the view angle hemisphere (a) SZA = 20°.
(b) SZA = 40°. (c) SZA = 60°. Land-cover type: vegetation. Aerosol type:
continental.

central SZA is 32°, the VZA is 0°, and the RAA is 180°, with
RMSE of 0.012 for vegetation, 0.013 for soil, and 0.025 for
snow/ice, respectively.

In conclusion, the angular bin regression model is very
robust, and its accuracy depends on the angular bins, aerosol
conditions, and land-cover types.

B. Validation

The field-observed local noon albedos (ground-truth data)
provided by FLUXNET are used to validate the broad-
band albedos estimated by the direct-estimation algorithm.
In this paper, the land-surface broadband albedos at local
noon are estimated using (10) and (11), whereas the coef-
ficients of the angular bin regression model are precal-
culated and saved in a LUT. When the MODIS daily
TOA reflectance product (MOD02) is acquired, the land-
surface broadband albedos are estimated using the coefficients
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(e) (f)

(a) (b)

(c) (d)

Fig. 5. Scatter plot of reference albedo versus estimated albedo of different
aerosol types. (a) Continental. (b) Maritime. (c) Urban. (d) Desert. (e) Biomass
burning. (f) Haze.

of different angular bins searched from the LUT. Field-
observed albedo measurements are acquired from FLUXNET
website (http://daac.ornl.gov/FLUXNET/fluxnet.shtml), which
provides continuous observations of the exchanges of car-
bon dioxide, water vapor, and energy between the biosphere
and the atmosphere. The long-term field measurements of
upwelling/downwelling radiation flux are collected by the
tower-mounted pyranometers at a series of sites. In [41], the
spatial representativeness of FLUXNET sites is investigated,
and 53 sites are considered to meet the criterion of homo-
geneity. Based on their study, the same 53 tower-based field
measurement sites (shown in Table V) with ten different
land-cover types are selected to validate the direct-estimation
algorithm.

The time series of remote sensing retrieved daily albedo by
direct-estimation algorithm in several typical FLUXNET sites
are shown in Fig. 8, together with the ground measurements
and the eight day MCD43B3 products. When doing the
comparison, the blue-sky albedo is calculated by (5), where
the fraction of skylight is calculated by a predetermined LUT
based on 6S atmospheric radiative transfer code.

The land-cover type of the AU Tum site (35.66 °S,
148.15 °E) is evergreen broadleaf forests. From January 2002
to December 2004, the surface broadband albedo is ∼0.1 in

(c) (d)

(a) (b)

Fig. 6. Scatter plot of reference albedo versus estimated albedo of different
AOD. (a) AOD = 0.1. (b) AOD = 0.2. (c) AOD = 0.3. (d) AOD = 0.4.
Aerosol type: continental.

Fig. 7. Scatter plot of reference albedo versus estimated albedo of different
land-cover classes. Green points: are vegetation. Red points: soil. Blue points:
snow or ice. Aerosol type: continental.

summer, and when snow falls in winter, the albedo increases
dramatically to 0.25; when the snow melts in spring, the
albedo decreases immediately. Fig. 8(a) shows that the direct-
estimated albedos are consistent with the field-observed data.

The land-cover type of the US Fpe site (48.31 °N,
105.10 °E) is grasslands. From June 2002 to November 2005,
the albedo increases dramatically from 0.15 to 0.8 when
snow falls, and decreases immediately when the snow melts
[Fig. 8(b)]. In the winter of November 2003 to April 2004, the
direct-estimation algorithm obtained more estimation results



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

QU et al.: DIRECT-ESTIMATION ALGORITHM FOR MAPPING DAILY LAND-SURFACE BROADBAND ALBEDO 9

TABLE V

FIELD MEASUREMENTS ACQUIRED FROM FLUXNET

N Site ID Country IGBP Latitude Longitude STscoreleaf-on STscoreleaf-off
Type (degree) (degree)

1 AU Tum Australia EBF −35.66 148.15 9.75
2 AU Wac Australia EBF −37.43 145.19 11.3
3 BR Cax Brazil EBF −1.72 −51.46 5.33
4 BR Sa3 Brazil EBF −3.02 −54.97 6.23
5 BW Ghg Botswana SAV −21.51 21.74 0.67 0.6
6 BW Ghm Botswana WSA −21.2 21.75
7 BW Ma1 Botswana WSA −19.92 23.56 5.42 3.4
8 CA Ca1 Canada ENF 49.87 −125.33 5.99
9 CA Ca3 Canada ENF 49.53 −124.9 0.64
10 CA NS6 Canada OSH 55.92 −98.96
11 CA SF2 Canada ENF 54.25 −105.88 1.72
12 CA SF3 Canada ENF 54.09 −106.01 3.14
13 CA WP1 Canada MF 54.95 −112.47 1.65 1.15
14 CZ BK1 Czech Republic ENF 49.5 18.54 3.18
15 DE Geb Germany CRO 51.1 10.91 0.9 0.88
16 DE Hai Germany DBF 51.08 10.45 1.97 4.01
17 DE Kli Germany CRO 50.89 13.52 0.62 0.88
18 DE Tha Germany ENF 50.96 13.57 5.99
19 DE Wet Germany ENF 50.45 11.46 1.55
20 ES ES2 Spain CRO 39.28 −0.32 0.91 1.04
21 ES LMa Spain SAV 39.94 −5.77 1.89 1.89
22 FR Fon France DBF 48.48 2.78 0.51 0.64
23 FR Hes France DBF 48.67 7.07 1.44 1.21
24 FR Pue France EBF 43.74 3.6 0.87
25 GF Guy French Guyana EBF 5.28 −52.93 1.92
26 HU Bug Hungary GRA 46.69 19.6 1.74 0.93
27 IE Dri Ireland GRA 51.99 −8.75 1.05
28 IT Bon Italy ENF 39.48 16.54 2.43
29 IT Col Italy DBF 41.85 13.59 2.6 0.71
30 IT SRo Italy ENF 43.73 10.28 3.1
31 JP Mas Japan CRO 36.05 140.03 1.15 1.2
32 KR Kw1 Korea MF 37.75 127.16 3.81 13.41
33 NL Ca1 Netherlands GRA 51.97 4.93 1.03 0.95
34 NL Lan Netherlands CRO 51.95 4.9 1.44 1.41
35 NL Loo Netherlands ENF 52.17 5.74 1.4
36 PT Esp Portugal EBF 38.64 −8.6 0.86
37 RU Che Russia MF 68.61 161.34 0.54 0.44
38 SE Nor Sweden ENF 60.09 17.48 3.84
39 UK Gri UK ENF 56.61 −3.8 1.48
40 US Aud USA GRA 31.59 −110.51 0.62 1.12
41 US Bn1 USA ENF 63.92 −145.38 0.56
42 US Bo1 USA CRO 40.01 −88.29 1.48
43 US Bo2 USA CRO 40.01 −88.29 1.58
44 US Fmf USA ENF 35.14 −111.73 3.08
45 US FPe USA GRA 48.31 −105.1 1.05 0.93
46 US Fuf USA ENF 35.09 −111.76 1.72
47 US IB1 USA CRO 41.86 −88.22 0.76 0.77
48 US Ivo USA WET 68.49 −155.75
49 US MMS USA DBF 39.32 −86.41 8.75 6.87
50 US MOz USA DBF 38.74 −92.2 2.17 3.17
51 US SRM USA WSA 31.82 −110.87 2.13 1.48
52 US WCr USA DBF 45.81 −90.08 1.82 2.94
53 ZA Kru South Africa SAV −25.02 31.5 1.34 1.28

Vegetation is coded according to the IGBP classification. EBF: evergreen broadleaf forests. SAV: savannas. WSA: woody savannas.
ENF: evergreen needleleaf forests. OSH: open shrublands. MF: mixed forests. CRO: croplands. DBF: deciduous broad-leaf forests.
GRA: grasslands. WET: Wetlands. STscoreleaf-on and STscoreleaf-off are indices of landscape heterogeneity derived from
high-resolution scenes (enhanced thematic mapper plus) during the leaf-on and leaf-off seasons, respectively.

than did the traditional multiple-date-based algorithm during
the snow fall and melt processes.

The land-cover type of FR Pue site (43.74 °N, 3.6
°E) is evergreen broadleaf forests. In 2006, as no snow
falls in winter, the seasonal average of surface broadband
albedo is ∼0.1, and this does not significantly change
throughout the year. The albedos estimated by the direct-
estimation algorithm are consistent with field-observations
[Fig. 8(c)].

The land-cover type of the US Bo1 site (40.01 °N,
88.29 °W) is croplands. From May 2004 to December 2006,
the surface broadband albedo changes drastically, with albedo
changing from 0.1 to 0.25 during summer, and from 0.15 to
0.7 during winter [Fig. 8(d)]. The rise and fall of ground-
truth albedos trends can be captured by the direct-estimation
algorithm very well.

The land-cover type of CA NS6 site (55.92 °N, 98.96 °W)
is open shrublands. The seasonal variations of this site from
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(e) 

(a) 

(c) 

(b)

(d) 

Fig. 8. Time series plots of surface broadband albedos estimated by the
direct-estimation algorithm and field-observed ground data. (a) AU Tum,
EBF, 2002–2004. (b) US Fpe, GRA, 2002–2006. (c) FR Pue, EBF, 2006. (d)
US Bo1, CRO, 2004–2006. (e) CA NS6, OSH, 2002–2005. Red dots: field-
observed albedos. Blue asterisks: albedos estimated by the direct-estimation
algorithm. Green plus signs: albedos of the MCD43B3 product.

May 2002 to September 2005 are shown in Fig. 8(e). The
land-surface broadband albedo increases from 0.1 to ∼0.15 in
summer, and decreases in autumn. When snow falls, the albedo

Fig. 9. Scatter plot of surface broadband albedo estimated by the direct-
estimation algorithm and field-observed data, where 53 sites of (Table V)
with ten different land-cover types are employed in this comparison. Ramp
colors: number of scatters fall in each pixel (0.008 × 0.008).

Fig. 10. Scatter plot of direct-estimation algorithm broadband black-sky
albedo and MCD43B3 broadband black-sky albedo. Ramp colors: number of
scatters fall in each pixel (0.0035 × 0.0035).

gradually increases from 0.1 to ∼0.6. Fig. 8(e) shows that the
seasonal variation trends of albedo can be well captured by the
direct-estimation algorithm, though the estimated albedos are
a little higher than the field-observed albedos during summer
at this site.

The scatter plots of estimated and ground observed daily
albedo in all the 53 sites (Table V) are shown in Fig. 9, where
the ramp color stands for the number of the scatter points that
fall in each pixel. The overall R2 is 0.8182, and RMSE is
0.0538. The quantitative assessment of this algorithm corre-
sponds to the overall error of the direct-estimation algorithm.

The consistency of the direct-estimation algorithm and
MCD43B3 product are also examined in this paper. We derived
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an eight day albedo product by simply averaging the daily
direct-estimated broadband albedo in a 16-day time window.
One thousand seven hundred thirty-nine pixels around the
world from 2006 to 2009 are selected for this comparison,
including the sites that are usually used for in situ valida-
tion (FLUXNET sites, baseline Surface Radiation Network
sites, thematically homogenous pixels selected by POLDER-
3 BRDF database, and so on). The scatter plot of broadband
black-sky albedo derived by direct-estimation algorithm and
MCD43B3 product is shown in Fig. 10. The overall R2 is
0.9203, and RMSE is 0.0312. The comparison result shows
that the overall accuracy of the direct-estimation algorithm,
which is derived without doing atmospheric corrections, is
consistent with the current widely used MCD43B3 product.

C. Discussion

The preliminary validation of the direct-estimation algo-
rithm indicates reasonably good results. The retrieved albedos
are in good agreement with the ones of MODIS product
though they are derived from different algorithms. As a merit
of the direct-estimation algorithm, it is capable of generating
albedo product in daily temporal resolution, which will reflect
the dynamic of land-surface albedo better than the traditional
multiple-date-based algorithm. However, the direct-estimation
algorithm is still sensitive to the clouds and other noise
sources, and the preliminary results should be filtered based
on the dynamic process models.

Based on the simulation results, the theoretical average
uncertainty of the algorithm is ∼0.009 for vegetation, 0.012
for soil, and 0.030 for snow/ice. This uncertainty estimation is
based on the assumption that surface BRDF and atmosphere
radiative transfer are accurately modeled. Noise in satellite
observations is also not considered in this analysis. So, much
larger estimation errors should be expected when applying this
method to real satellite data.

This algorithm involves three limitations that should be
taken into consideration.

1) This algorithm constitutes an empirical model based on
a training BRDF data set. As a result, the performance
of the algorithm is limited by the representativeness of
training data set, as well as the accuracy of surface
BRDF and atmospheric radiative transfer model that
is adopted in the simulation. In addition, because this
algorithm only uses one scene of MODIS data for each
estimation process, the algorithm may be more sensi-
tive to noise than the multiobservation-based algorithm,
especially when clouds and snow mix in the image
pixels.

2) Although the POLDER-3/PARASOL BRDF database is
the most suitable training data for this paper, the data
set’s resolution is much lower than that of the MODIS
data. We readily admit that this is a probable source of
uncertainty for this algorithm; the scale effects of the
training data set need to be studied in the future.

3) In this paper, the broadband albedo estimated by
the proposed method is preliminarily validated against
ground-based point measurements. However, the spatial
resolution of tower-observed albedos is not consistent
with albedos estimated from satellite observations. Fur-

ther validations based on high-resolution satellite data
for scaling-up [42] are still needed.

IV. CONCLUSION

The temporal and spatial variation of land-surface broad-
band albedo was critical information for global change studies.
A daily albedo product was needed, especially when the albedo
changes rapidly, such as when snow was falling or melting.
In this paper, a direct-estimation algorithm was proposed for
estimating daily land-surface broadband albedo using MODIS
data. This method builds a linear relationship between the
TOA directional reflectances and land-surface broadband albe-
dos using an angular bin regression method. Because the
requirements for data and the associating data preprocessing
were minimized, this method enables the production of daily
broadband albedos. This paper has improved the algorithm in
several ways.

1) An atmospheric radiative transfer simulation method
was applied to replace the usual atmospheric correction
procedure. In the previous paper, the atmospheric radia-
tive transfer simulation method was based on the Lam-
bertian assumption, whereas a fast, accurate analytical
equation that accounts for BRDF effects was used in
this paper.

2) The current standard MODIS BRDF/albedo algo-
rithm needs 16-day composite atmospheric-corrected
reflectance data to retrieve the land-surface albedo with
a linear kernel-driven model, whereas only one scene
of MODIS data is needed in our algorithm, so that
daily albedo product can be generated. Validation results
showed that the direct-estimation method is consistent
with the current standard MODIS BRDF/albedo product
and with improved capability for characterizing the
temporal variation of albedo, especially when the land-
surface BRDF changes rapidly.

3) The POLDER-3/PARASOL BRDF database was
employed in this paper. The POLDER instrument
provides much better angular sampling of the viewing
direction hemisphere than MODIS [11]. The BRDF
database served as a training data set that allows for a
complete representation of the BRDF characteristics of
land surfaces in global scope.

4) The proposed algorithm uses a precalculated LUT to
estimate the land-surface broadband albedo, so it is
efficient and suitable for producing long-term global
albedo products [43].
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