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a  b  s  t  r  a  c  t

Gross  primary  production  (GPP)  is  of significant  importance  for the  terrestrial  carbon  budget  and  cli-
mate  change,  but large  uncertainties  in  the  regional  estimation  of GPP  still  remain  over  the terrestrial
ecosystems  in  China.  Eddy  covariance  (EC)  flux  towers  measure  continuous  ecosystem-level  exchange  of
carbon  dioxide  (CO2)  and  provide  a promising  way  to estimate  GPP.  We  used  the  measurements  from  32
EC sites  to  examine  the performance  of  a light use  efficiency  model  (i.e.,  EC-LUE)  at  various ecosystem
types,  including  23  sites  in  China  and 9  sites  in adjacent  areas  with  the  similar  climate  environments.
No significant  systematic  error  was  found  in the  EC-LUE  model  predictions,  which  explained  79%  and
62%  of  the GPP  variation  at the  validation  sites  with  C3 and  C4 vegetation,  respectively.  Regional  patterns
of  GPP  at a spatial  resolution  of 10  km  × 10 km from  2000  to  2009  were  determined  using  the  MERRA
(Modern  Era  Retrospective-analysis  for Research  and  Applications)  reanalysis  dataset  and  MODIS  (MOD-
erate resolution  Imaging  Spectroradiometer).  China’s  terrestrial  GPP decreased  from  southeast  toward
the northwest,  with  the  highest  values  occurring  over  tropical  forests  areas,  and the  lowest  values  in
dry regions.  The  annual  GPP  of  land  in  China  varied  between  5.63  Pg  C and  6.39  Pg C,  with  a  mean  value
of  6.04  Pg  C, which  accounted  for  4.90–6.29%  of the  world’s  total  terrestrial  GPP.  The GPP densities  of
most  vegetation  types  in  China  such  as  evergreen  needleleaf  forests,  deciduous  needleleaf  forests,  mixed
forests,  woody  savannas,  and  permanent  wetlands  were  much  higher  than  the  respective  global  GPP
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of  Chinese Academy of Sciences, Beijing 100875, China.
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densities.  However,  a  high  proportion  of sparsely  vegetated  area  in China  resulted  in the overall  low GPP.
The inter-annual  variability  in  GPP  was  significantly  influenced  by  air temperature  (R2 = 0.66,  P <  0.05),
precipitation  (R2 =  0.71,  P < 0.05),  and  normalized  difference  vegetation  index  (NDVI)  (R2 = 0.83,  P <  0.05),
respectively.

Published by Elsevier B.V.

1. Introduction

Terrestrial ecosystems, driving most seasonal and inter-annual
variations in atmospheric CO2 concentration, have taken up about
20–30% of the annual total anthropogenic CO2 emission as organic
compounds over the last two and half decades (Canadell et al.,
2007). Gross primary productivity (GPP), defined as the sum of pho-
tosynthetic carbon uptake by vegetation in terrestrial ecosystems,
is a start of the carbon biogeochemical cycle and the principle indi-
cator of biosphere carbon flux. Moreover, GPP contributes to human
welfare because it is the basis for food, fiber and wood production,
and retains human development (Beer et al., 2010). Predicting the
GPP of terrestrial ecosystems has received increasing attention in
global change studies (Canadell et al., 2000).

Numerous ecosystem models have been used to quantify the
spatio-temporal variations in terrestrial vegetation production at
large scales in China (Xiao et al., 1998; Liu et al., 1999; Chen et al.,
2001; Liu, 2001; Piao et al., 2001; Gong et al., 2002; Tao et al., 2003).
However, different ecosystem models are inconclusive regarding
the magnitude and spatial distribution of GPP at the regional scales.
Chen et al. (2001) quantified annual GPP in China as 12.26 Pg C,
which is 3.14 times the estimate of Piao et al. (2001), who esti-
mated China’s annual primary production to be 3.90 Pg C (Table 1).
Model outputs were indicated by low confidence at regional scales
due to the following major limitations: (1) the spatial and tempo-
ral heterogeneity of ecosystem processes used by models, (2) the
nonlinearity of the functional responses of ecosystem processes to
environmental variables, (3) the requirements of both physiological
and site-specific parameters, and (4) inadequate validation against
observation (Baldocchi et al., 1996; Friend et al., 2007; Yuan et al.,
2010).

Of all the predictive methods, the light use efficiency (LUE)
model may  have the most potential to adequately address the spa-
tial and temporal dynamics of GPP because it is practical and has
a theoretical basis (Running et al., 2000, 2004). The light use effi-
ciency model is based on process-based algorithms that emphasize
the uniqueness, similarity, and consistency of ecosystem processes
in both time and space and it, therefore, avoids the problem of
responsive nonlinearity of ecosystem processes to environmen-
tal variables (Yuan et al., 2010). Moreover, the light use efficiency

Table 1
Estimation of GPP in different terrestrial models.

Model GPP (Pg C yr−1) Study period References

TEM 7.31 1993–1996 Xiao et al. (1998)
CASA 3.90 1997 Piao et al. (2001)
RSM 12.26 1990 Chen et al. (2001)
CEVSA 6.18 1981–1998 Tao et al. (2003)
BEPS 4.42 2001 Feng et al. (2007)
TEPC 9.44 2001 Liu (2001)
Revised CASA 6.24 1989–1993 Zhu et al. (2007)
EC-LUE 6.04 2000–2009 In this study

Abbreviations: TEM: terrestrial ecosystem model, CASA: Carnegie–Ames–Stanford-
approach, CEVSA: carbon exchange between vegetation, soil, and the atmosphere,
BEPS: boreal ecosystem productivity simulator, TEPC: terrestrial ecosystem produc-
tion  process model in China, EC-LUE: Eddy covariance and light use efficiency, and
RSM: remote sensing model.
When GPP values are not available in some references, GPP was  calculated by NPP
multiplying a factor of 2.

model integrates remote sensing observations to provide consis-
tent model inputs in time and space.

EC-LUE (Eddy Covariance Light Use Efficiency) was developed to
simulate daily GPP, driven by four variables including the normal-
ized difference vegetation index (NDVI), photosynthetically active
radiation (PAR), air temperature and the evaporative fraction (the
ratio of latent heat to the sum of latent and sensible heat) (Yuan
et al., 2007, 2010). The EC-LUE model is an alternative approach
that enables mapping of daily GPP over large areas because the
potential LUE is invariant across various land cover types, and all
driving forces of the model can be derived from remote sensing data
or existing climate observation networks. The EC-LUE model was
calibrated and validated using estimated GPP from eddy covariance
towers in the AmeriFlux and EuroFlux networks covering a variety
of forests, grasslands, and savannas (Yuan et al., 2007, 2010). How-
ever, EC-LUE has not been validated over the China ecosystem due
to limited EC measurements. This study had the following objec-
tives: (1) to examine the performance of the EC-LUE model over the
terrestrial ecosystems in China, (2) to quantify the spatial and tem-
poral patterns of GPP over the land in China, and (3) to investigate
the inter-annual variability of GPP and environmental regulations
during the period 2000–2009.

2. Materials and methods

2.1. The EC-LUE model

In this study, we  used the EC-LUE (Eddy Covariance – Light Use
Efficiency) model to estimate GPP over the terrestrial ecosystem
in China. The EC-LUE model was developed, parameterized, and
validated using estimated GPP based on eddy covariance measure-
ments covering various ecosystem types. Previous EC-LUE models
were hampered by poor simulation of the evaporative fraction at
large spatial scales, which was  used to present the moisture con-
straint on light use efficiency. Net radiation (Rn) is substituted for
both the latent heat (LE) flux and sensible heat (H) flux (Yuan et al.,
2010), thus omitting the soil heat flux. Rn can be derived from
existing climate observation networks. The revised RS-PM (Remote
Sensing-Penman Monteith) model was used to estimate evapo-
transpiration (ET), which is equivalent to LE (Yuan et al., 2010).
The calibrated values for optimal temperature and potential light
use efficiency of the EC-LUE model were 21 ◦C and 2.25 g C M J−1,
respectively (Yuan et al., 2010).

In the latest study, the EC-LUE and the revised RS-PM models
were calibrated and validated using estimated GPP based on EC
measurements at twenty-two and thirty-three sites from the Amer-
iFLUX and EuroFLUX networks, respectively (Yuan et al., 2010).
The revised RS-PM model explained 82% and 68% of the observed
variations of ET for all the calibration and validation sites, respec-
tively. Using estimated ET as the input, the EC-LUE model explained
75% and 61% of the observed GPP variation for calibration and
validation sites, respectively. Global patterns of GPP at a spatial
resolution of 10 km × 10 km from 2000 to 2003 were determined
using the EC-LUE model based on the global MERRA and MODIS
datasets. The global GPP estimates of 110 ± 21 Pg C yr−1 agreed well
with other global models from the literature (Beer et al., 2010).
Because the potential LUE of the EC-LUE model is invariant across
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various land cover types, it is easy to map  daily GPP over large
areas.

2.2. Data at EC site

Twenty-three EC sites in China, covering various ecosystem
types such as forests, grasslands, croplands, and prairies, were
included in this study to validate the EC-LUE model (Table 2). To
substantially validate the EC-LUE model over different ecosystem
types, we also used the measurements of 9 EC sites in several
Asian countries including Russia, Korea, and Japan since similar
climate conditions occurred in both China and these other Asian
regions. For example, site information of TKY was described in pre-
vious reports (Saigusa et al., 2005). Half-hourly or hourly averaged
regional radiation (Ra), photosynthetically active radiation (PAR),
air temperature (Ta), and friction velocity (u*) were used with the
net ecosystem exchange of CO2 (NEE) in this study.

Data analyses procedures were presented in Yuan et al. (2010).
Briefly, daily NEE, ecosystem respiration (Re), and meteorological
variables were synthesized based on half-hourly or hourly values.
The tower-based GPP was calculated as the result of NEE and Re.
Daytime respiration Re is usually developed from nighttime NEE
measurements which equals to night respiration, and estimated
by using daytime temperature and a linear equation describe the
temperature dependence of respiration. Desai et al. (2008) applied
23 different methods to 10 site years of EC in order to investigate
the effects of partitioning method choice, data gaps, and inter-site
variability on estimated GPP and Re, which indicated that most
methods differed by less than 10% in estimates of both GPP and
Re. This confirms that the uncertainty of site-based GPP calculation
may  not enlarge the difference between predicted and observed
GPP. The daily values were indicated as missing when missing data
was more than 20% of the entire data on a given day. Otherwise,
daily values were calculated by multiplying the averaged hourly
rate by 24 h.

The normalized difference vegetation index (NDVI) and the leaf
area index (LAI) for the EC sites were determined from Moderate
Resolution Imaging Spectroradiometer (MODIS) data. MODIS ASCII
subset data used in this study were generated from MODIS Col-
lection 5 data that was downloaded directly from the Oak Ridge
National Laboratory Distributed Active Center (ORNL DAAC) web-
site. The 8-day MODIS LAI (MOD15A2) and 16-day MODIS NDVI
(MOD13A2) data at 1 km × 1 km spatial resolution were the basis
for model verification in the EC flux sites. Only the NDVI and LAI
values of the pixel containing the tower were used. Quality con-
trol (QC) flags, which signal cloud contaminate in each pixel, were
examined to screen and reject poor quality NDVI and LAI data.

2.3. Data at regional scale

For regional estimates of GPP, we used input datasets for air
temperature (T) and relative humidity (Rh) obtained from 753 sta-
tions in China by meteorological interpolation and net radiation
(Rn) and photosynthetically active radiation (PAR) from the MERRA
(Modern Era Retrospective Analysis for Research and Applications)
archive from 2000 to 2009 (Global Modeling and Assimilation
Office, 2004). MERRA is a NASA reanalysis for the satellite era
data using the Goddard Earth Observing System Data Assimilation
System Version 5 (GEOS-5). MERRA uses data from all avail-
able global surface weather observations every 3 h. GEOS-5 was
used to interpolate and grid the MERRA point data over a short
time sequence, and it produces an estimate of climatic condi-
tions for the world at 10 m above the land surface (approximating
canopy height conditions) and at a resolution of 10 km × 10 km.
The MERRA reanalysis dataset has been validated carefully at the
global scale using surface meteorological data sets to evaluate the

uncertainty of various meteorological factors (i.e., temperature,
radiation, humidity, and energy balance). The reanalysis showed
that MERRA considerably reduced the energy and water imbal-
ance. Detailed information on the MERRA dataset is available at
the website http://gmao.gsfc.nasa.gov/research/merra.

Global 8-day MODIS LAI (MOD15A2) and 16-day MODIS NDVI
(MOD13A2) data were used in this study. Quality control (QC) flags
were examined to screen and reject poor quality NDVI and LAI data.
We temporally filled in the missing or unreliable LAI and NDVI
at each 1-km MODIS pixel based on their corresponding quality
assessment data fields as proposed by Zhao et al. (2005). If the first
(or last) 8-day LAI (16-day NDVI) data were unreliable or missing,
they were replaced by the closest reliable 8-day (or 16-day) val-
ues. Both spatially related average and total GPP over the terrestrial
ecosystems in China are area-weighted.

Meanwhile, GPP densities among various vegetation types in
China were compared with those values in global terrestrial ecosys-
tems. We  also compared the difference between GPP estimated
by the EC-LUE model and MODIS product in China. The annual
MODIS GPP during the period from 2000 to 2010 was downloaded
from the websites as following: http://http.ntsg.umt.edu/pub/
MODIS/Mirror/MOD17 Science 2010/MOD17A3/Geotiff/.

2.4. Statistical analysis

The following three metrics were used to evaluate the perfor-
mance of the EC-LUE model:

(1) The coefficient of determination (R2), which represents the
amount of variation in the observation that was explained by
the models.

(2) Predictive error (PE), which quantifies the difference between
simulated and observed values:

PE = S − O (1)

where S and O are mean simulated and mean observed values,
respectively.

(3) Relative predictive error (RPE) computed as:

RPE = S − O

O
× 100% (2)

Moreover, we  used the standard deviation (SD) of the annual GPP  to
characterize the absolute inter-annual variability (AIAV) and used
the coefficient of variation (CV, the ratio of SD and mean value
of annual GPP) to characterize the relative inter-annual variability
(RIAV).

3. Results and discussion

3.1. Model performance

Over various ecosystem types such as forests, croplands, and
grasslands, the EC-LUE model successfully predicted the magni-
tudes and seasonal variations of GPP derived by the observed
environmental variables (i.e., T, PAR, and Rn) (Fig. 1). The predicted
GPP and estimated GPP from the EC measurement time series at the
validation sites demonstrated distinct seasonal cycles and matched
well. At most sites, GPP values were near zero in the winter because
low temperature and frozen soil inhibited photosynthetic activi-
ties.

Collectively, the EC-LUE model explained about 79% of the vari-
ation of the 8-day GPP estimated at validation sites dominated by
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Fig. 1. Variation in the 8-day mean value of predicted and observed GPP at the EC-LUE model validation sites in China. The black solid lines represent the predicted GPP, and
the  open circle dots represent observed GPP.
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Table 2
Name, location, vegetation type and available years of the study sites used for the EC-LUE model validation.

Site name Latitude, longitude Vegetation type Available years

CN-Du 42.05◦N, 116.67◦W Cropland 2005–2006
Miyun 40.63◦N, 117.32◦W Cropland 2008–2009
MSE  36.05◦N, 140.03◦W Cropland 2001–2004
Yuzhong 35.95◦N, 104.13◦W Cropland 2008–2009
Guantao 36.52◦N, 105.13◦W Cropland/Maize 2009
Jinzhou 41.18◦N, 121.21◦W Cropland/Maize 2008–2009
TongyuCrop 44.57◦N, 122.88◦W Cropland/Maize 2009
Yingke 38.86◦N, 100.41◦W Cropland/Maize 2008–2009
CBS  42.40◦N, 127.09◦W Forest 2003–2008
CN-Anh 30.48◦N, 116.98◦W Forest 2005–2006
CN-Bed 39.53◦N, 116.25◦W Forest 2005–2006
DHS  23.17◦N, 112.53◦W Forest 2002–2008
JP-Tef 45.06◦N, 142.11◦W Forest 2002–2006
JP-Tom 42.74◦N, 141.52◦W Forest 2001–2004
MBF  44.38◦N, 142.32◦W Forest 2004–2006
QYZ  26.74◦N, 115.07◦W Forest 2002–2008
RU-Fyo 56.46◦N, 32.92◦W Forest 2000–2006
RU-Zot 60.80◦N, 89.35◦W Forest 2002–2005
SKT  48.35◦N, 108.65◦W Forest 2003–2007
TKY  36.15◦N, 137.42◦W Forest 1999–2007
Arou  38.04◦N, 100.46◦W Grassland 2008–2009
Changwu 35.20◦N, 107.67◦W Grassland 2008–2009
CN-HaM 37.37◦N, 101.18◦W Grassland 2002–2004
Dongsu 44.09◦N, 113.57◦W Grassland 2008–2009
DuolunFenced 42.04◦N, 116.29◦W Grassland 2009–2010
DuolunGrazed 42.05◦N, 116.28◦W Grassland 2009–2010
KBU  47.21◦N, 108.74◦W Grassland 2003–2009
Qingyang 35.59◦N, 107.54◦W Grassland 2009
SiziwangFenced 41.23◦N, 111.57◦W Grassland 2010
SiziwangGrazed 41.28◦N, 111.68◦W Grassland 2010
TongyuGrass 44.57◦N, 122.88◦W Grassland 2008–2009
Zhangye 39.09◦N, 100.30◦W Grassland 2008

C3 plants and 62% by C4 vegetations (Fig. 2), respectively. Indi-
vidually, the coefficients of determination (R2) between observed
GPP and predicted GPP varied from 0.48 to 0.98, but all of them
were statistically significant at P < 0.05 (Fig. 3). For the R2 values
between observed and estimated ET, similar tendency was  found
with a range from 0.39 at. and 0.97 (Fig. 3). The EC-LUE model
explained significant amounts of GPP variability at the individual
sites; however, large differences between the predicted and the
estimated GPP values from EC measurements existed at a few sites.
For example, the model underestimated GPP at Guantao, Jinzhou,
Tycropland, and Yingke, with the relative predictive errors being
−55%, −43%, −35%, and −40%, respectively. At the other EC sites,
the EC-LUE model gave a good prediction with RPE values less than

25% (Fig. 3). In general, ET model showed better performance than
GPP model in terms of RMSE (Fig. 3).

Several aspects including plant species, satellite data, meteo-
rology data, ET simulation, and EC site data, should be considered
when evaluating the EC-LUE model performance. The discrepan-
cies between predicted and estimated GPP from EC measurement
values occurred mainly in maize croplands such as Guantao,
Tycropland, Jinzhou, and Yingke. Under the same climate condi-
tions, C4 crops have a greater photosynthetic capacity and more
rapid accumulation of green leaf area than C3 crops (Chapin et al.,
2002; Turner et al., 2003; Suyker et al., 2005; Zhang et al., 2008).
The major cause for the underestimation of GPP at the maize crop-
lands was because parameters of the EC-LUE model were calibrated
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Fig. 2. Comparison of GPP observations from the flux tower sites and predictions by the EC-LUE model from C3 vegetation (a) and C4 vegetation (b) types, respectively. The
EC-LUE model could explain 79% and 62% of GPP variations for C3 (y = 0.90x + 0.34, R2 = 0.79, P < 0.05) and C4 vegetation types (y = 0.46x + 0.50, R2 = 0.62, P < 0.05), respectively.
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Fig. 3. Statistic analysis of the daily ET and GPP that observed at the 32 EC sites and predicted by the respective RS-PM and EC-LUE models. (a) Average daily ET compared
between the observed and the predicted values, (b) average daily GPP compared between the observed and the predicted values, (c) coefficient of determination (R2), (d)
Predicted error (PE), (e) Relative predicted error (RPE), (f) Root mean square error (RMSE). Plots showed the median, upper and lower quartile, minimum and maximum
outliers (points) at the 32 EC sites.

in C3 plant dominant ecosystems. The underestimation of GPP for
maize was close at the four croplands, and the peak of the simulated
GPP was 50% smaller than the observed GPP, which is similar to the
previous result (Yuan et al., 2010). Consistent potential light use
efficiency was  derived for C4 crops to improve the performance of
the EC-LUE model in the maize croplands. In this study, the mean
8-day GPP estimations from four maize cropland sites (Guantao,
Jinzhou, Tycropland, and Yingke) were multiplied by a revision
factor of 1.5 (Fig. 1), and the EC-LUE model performed better in the
correlation relationship between the observed and the predicted
GPP. Yuan et al. (2010) indicated that the calibrated values for opti-
mal  temperature and potential LUE were 19 ◦C and 4.06 g C MJ−1 in
maize cropland sites, and the EC-LUE model successfully predicted
the magnitudes and seasonal variations of observed GPP using dif-
ferent parameters for C3 and C4 crops, respectively. Therefore, the
EC-LUE model could be revised by changing the parameters for the
C4 vegetation type, and it is necessary to use a spatial distribution
map  of C3 and C4 crops to improve the accuracy of quantifying GPP
across large scales. There were difficulties in the revision of the EC-
LUE model because there is no distribution map  of C4 crops. The
harvested area of China’s maize cropland only accounts for about
3.5% of the total land area (FAOSTAT, 2008), so the GPP estimate
of maize croplands did not significantly affect the terrestrial GPP
total.

The EC-LUE model makes it possible to map  daily GPP over
large areas because the potential LUE is invariant across vari-
ous land cover types and all driving forces of the model can be
derived from remote sensing data or existing climate observa-
tion networks. EC measurements at multiple sites over the North
American and Europe have been used to calibrate and validate the
EC-LUE model (Yuan et al., 2007, 2010). In this study, model vali-
dation at 36 EC sites suggested that the EC-LUE model was robust
and reliable across most of the biomes and geographic regions in
China. The coefficient determination (R2) between GPP estimates
and GPP observations for the 8-day results ranged from 0.79 for
C3 vegetation to 0.62 for C4 vegetation, respectively. We  did not
calibrate the model parameters based on the EC measurements
in China, which indicates constant model parameters at various
regions.

Satellite data to provide temporally and spatially continuous
information over the vegetated surface significantly strengthened
model performances across the regional scales. This study used
MODIS/Terra NDVI and LAI products that were downloaded directly
from the MODIS Web  site. Because no attempt was made to improve
the quality of the NDVI or LAI data, any noise or error in the satel-
lite data would be transferred to GPP simulations. Additionally, the
accuracy of regional or global estimates of GPP is highly depend-
ent on the meteorology dataset. Fig. 3 showed the performance of
the EC-LUE model driven by tower-specific meteorology and by the
global MERRA meteorology dataset, respectively. The model driven
by tower-specific meteorology data explained 91% of the variations
of the annual mean GPP across the validation sites (Fig. 4a) and pro-
vided no systematic errors in model predictions. In contrast, using
the MERRA dataset significantly decreased the model performance
and explained 85% of the variations of GPP (Fig. 4b). The accuracy
of the existing meteorological reanalysis data sets showed marked
spatial and temporal differences, which is in agreement with the
previous study (Zhao et al., 2006).

In general, MERRA can denote the variability of air tempera-
ture, relative humidity and photosynthetically active radiation very
well with R2 values between EC sites and MERRA of 0.88, 0.83, and
0.76, respectively (Fig. 5). The tendency for MERRA to underesti-
mate net surface (Rn) radiation (R2 = 0.61) resulted in the lower
predicted GPP (Figs. 4b and 5). Our results revealed that the biases in
meteorological reanalysis can introduce substantial errors into GPP
estimation and also emphasizes the necessity to minimize these
biases to improve the quality of the GPP product.

Estimated ET by the revised RS-PM model was  used to simulate
GPP. Any simulation errors of ET will be transferred to GPP estima-
tions. In general, the revised RS-PM model successfully predicted
the variations of ET at 32 EC sites (Fig. 3). Large errors still existed
at a few sites such as Changwu, SKT, and Yingke that had RPE val-
ues of 32%, 44% and −28%, respectively. The errors resulted in an
overestimate and an underestimate of terrestrial GPP. There was
a significant relationship between predictive errors of ET and GPP
(data not shown). The simulated GPP depended greatly on the qual-
ity of the ET result, and the improved RS-PM model for ET estimate
will strengthen the accuracy of the GPP estimate.



Author's personal copy

86 X. Li et al. / Ecological Modelling 261– 262 (2013) 80– 92

Estimated GPP based on 

EC measurements (g C m-2 d-1 )

0 2 4 6 8 10 12 14

S
im

u
la

te
d

 G
P

P
 b

a
se

d
 o

n
 

E
C

 m
et

eo
ro

lo
g

y
 d

a
ta

(g
 C

 m
-2

 d
-1

)

0

2

4

6

8

10

12

14

Estimated GPP based on 

EC measurements (g C m-2 d-1)

0 2 4 6 8 10 12 14

S
im

u
la

te
d

 G
P

P
 b

a
se

d
 o

n
 

M
E

R
R

A
 d

a
ta

(g
 C

 m
-2

 d
-1

)

0

2

4

6

8

10

12

14

Fig. 4. Comparisons of mean GPP observations from 2000 to 2009 at each flux tower sites and the GPP estimates made by the revised EC-LUE model. These data were created
using  (a) tower-specific meteorology (y = 0.84x + 0.61, R2 = 0.91) and (b) the regional MERRA meteorology (y = 0.75x + 0.70, R2 = 0.85). The mean GPP estimations from four
maize  croplands (Guantao, Jinzhou, Tongyu, and Yingke) for the regression relationship were multiplied by a revision factor of 1.5. The original predicted GPP from maize
croplands was  indicated as open circles in each figure.

Moreover, many studies have shown that the uncertainty of
model parameters was the large contributor to the overall model
uncertainty (Verbeeck et al., 2006). Therefore, the assessment of
the uncertainty surrounding estimates of GPP provides extremely
useful information for understanding ecosystem carbon cycle and
investigations on impacts of climate change. In this study, we used
fixed model parameter values, however numerous of studies have
showed the inversed model parameters varied within parameter
range (Alton, 2011). So, it is necessary to evaluate uncertainty

of GPP estimations derived from model parameters in the near
future.

3.2. Spatial patterns of GPP

China’s terrestrial GPP varied between 5.63 Pg C yr−1 and
6.39 Pg C yr−1 from 2000 to 2009, with a mean value of
6.04 Pg C yr−1. Compared with the previous results, China’s
terrestrial GPP accounted for 4.90–6.29% of the world’s terrestrial
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Fig. 5. Comparison of monthly average meteorology factors measured at EC sites and derived from the MERRA dataset: (a) air temperature (y = 0.91x + 1.1, R2 = 0.88), (b)
relative  humidity (Rh, y = 0.62x + 1.72, R2 = 0.61), (c) net radiation (Rn, y = 0.97x + 0.01, R2 = 0.83), and (d) photosynthetically active radiation (PAR, y = 0.84x + 0.22, R2 = 0.76).
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total (Beer et al., 2010; Yuan et al., 2010). We  calculated the
MODIS GPP in China area, with a result of 5.47 Pg C yr−1 during the
period of 2000–2009 (Table 4). It indicated that the EC-LUE model
overestimated GPP by 10% when compared with MODIS GPP,
especially in Xizang, Qinghai, and Xinjiang provinces. No signif-
icant difference of GPP estimation was found between EC-LUE
prediction and MODIS product in other provinces (Table 3).

In this study, GPP predicted by the EC-LUE model was also
comparable to other previous estimations in China (Table 1). For
example, a regional estimation of GPP by Tao et al. (2003) showed
6.18 Pg C yr−1 using a process-based ecosystem model (i.e., the
CEVAS model). Also, a comparable gross carbon uptake between
6.91 Pg C yr−1 and 7.33 Pg C yr−1 also occurred for the conterminous
U.S. (Xiao et al., 2010). However, different ecosystem models are
inconclusive regarding the magnitude and spatial distribution of
the GPP at regional and global scales (Cao and Fian, 1998; Chen
et al., 2006; Landsberg and Waring, 1997; Mu  et al., 2007; Potter
et al., 1993; Running et al., 1999; Xiao et al., 2004), and large uncer-
tainties of regional GPP still remain for the terrestrial ecosystems
in China. For example, a high terrestrial vegetation production of
12.26 Pg C yr−1 in China was found using a remote sensing model
(Chen et al., 2001), which is equivalent to 2.06 times the GPP esti-
mation in this study. Even though the same CASA model was  used,
large differences existed in the estimation of GPP between the stud-
ies of Piao et al. (2001) and Zhu et al. (2007). This discrepancy may
be because Piao et al. (2001) used the default parameter value of
potential light use efficiency (i.e., 0.389 g C m−2 MJ−1 APAR) derived
by Potter et al. (1993). Zhu et al. (2007) inversed the potential
light use efficiency based on field-measured NPP at 690 sites in
the individual vegetation types, and the parameters were higher
than the default in the CASA model. According to our estimation,
vegetation GPP over the terrestrial ecosystem is disproportionate
to land area in China. The total land area in China is only about
7% of the world land area and about 56–65% of this area is hills,
mountains, plateau, and arid and semiarid regions (Fang and Yoda,
1990; Piao et al., 2001). A large barren or sparsely vegetated area
may  lead to a low GPP estimate for the terrestrial ecosystem in
China.

Fig. 6 shows the spatial distribution of average GPP predicted
by EC-LUE model in this study, MODIS product, and EC-LUE
model in Yuan et al. (2010). Overall, similar tendency of GPP was
found in China from 2000 to 2009, with GPP decreasing from the
southeast toward the northwest. Also, significantly lower GPP mag-
nitude and obvious footprint at the course resolution was found
in Yuan et al. (2010) when compared with the spatial distribu-
tion of GPP in this study. Southern Hainan Island, Southwestern
Yunnan, and Southeastern Tibet, where the dominant vegetation
is tropical and semitropical evergreen broadleaf forests, showed
high GPP values with GPP densities exceeding 2000 g C m−2 yr−1.
The average GPP of Heng-tuan Mountains, Wuyi Mountain, and
the interior part of Taiwan showed relatively high values of GPP
such as 1500 g C m−2 yr−1. From the stand point of national ter-
ritory, the relatively high annual production (1436–1895 g C m−2)
is found in Taiwan, Hainan, Fujian, Yunnan, Guangxi, and Guang-
dong provinces (Table 3) where both temperature and moisture
requirements are fully satisfied for photosynthesis. Temperate
regions have an intermediate GPP (701–1348 g C m−2). The low-
est GPP (<700 g C m−2) is found in both cold and arid regions
such as Xinjiang, Qinghai, Xizang, Ningxia, Gansu, and Inner
Mongolia, where either temperature or precipitation is a limiting
factor.

Estimations of average GPP densities over different land cover-
age were shown in Table 4. The MODIS land coverage classification
product was used to identify 16 different land cover types in
China. Croplands take up an average of 1.31 Pg C yr−1, account
for 22% of China’s terrestrial GPP and have a relatively high GPP

Fig. 6. Spatial distribution of the variability in GPP estimates as represented by
(a) annually averaged MODIS GPP (g C m−2 yr−1) during the period 2000–2009,
(b) GPP estimation (g C m−2 yr−1) driven by EC-LUE model with the interpolated
10 km MERRA meteorological data averaged from 2000 to 2009, (c) GPP estima-
tion (g C m−2 yr−1) driven by EC-LUE model with the interpolated 0.5 × 0.6 MERRA
meteorological data averaged from 2000 to 2009.

density. Mixed forests that assimilate 1.19 Pg C yr−1 are the second
most important biome in terms of the regional GPP. The third
important GPP value occurred in the grasslands, and the large
area of grasslands (more than twice the surface area of the mixed
forests) explains their high contribution followed by woody savan-
nas and natural vegetation mosaic. These five most productive
vegetation types accounted for 81% of the total gross primary
production in China. The GPP densities in barren or sparsely veg-
etated areas and savannas were much smaller. The averaged GPP
values were relatively high over evergreen broadleaf forests, woody
savannas, permanent wetlands, mixed forests and natural vegeta-
tion mosaics ranging from 1157 g C m−2 yr−1 to 1430 g C m−2 yr−1
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Table 3
Comparisons of the predicted GPP by EC-LUE model and MODIS GPP for different provinces during the period from 2000 to 2009.

Province name EC-LUE GPP MODIS GPP

Area (100 km2) GPP density (g C m−2 yr−1) GPP (Pg C yr−1) GPP (Pg C yr−1)

Xinjiang 17,559 120 0.211 0.122
Qinghai  7147 255 0.182 0.085
Xizang  11,352 319 0.362 0.172
Ningxia 529 325 0.017 0.013
Gansu  4144 366 0.152 0.112
Inner  Mongolia 12,925 384 0.496 0.317
Tianjin  123 588 0.007 0.005
Shanxi  1588 701 0.111 0.104
Hebei  1971 749 0.148 0.146
Shandong 1503 774 0.12 0.107
Liaoning 1547 793 0.12 0.102
Jilin  2143 793 0.17 0.164
Shanghai 48 796 0.04 0.004
Beijing  166 826 0.01 0.015
Heilongjiang 5462 835 0.46 0.402
Shaanxi 2048 909 0.19 0.174
Jiangsu  944 940 0.09 0.090
Henan  1609 981 0.16 0.140
Sichuan  4499 1007 0.45 0.416
Anhui  1331 1085 0.14 0.144
Hubei  1735 1174 0.21 0.202
Chongqing 775 1249 0.1 0.096
Hunan  1923 1310 0.25 0.265
Zhejiang 925 1327 0.12 0.141
Jiangxi  1526 1338 0.2 0.224
Guizhou 1611 1348 0.22 0.206
Guangdong 1554 1436 0.22 0.253
Guangxi 2098 1523 0.32 0.340
Yunnan 3424 1526 0.52 0.581
Fujian  1089 1548 0.17 0.210
Hainan  273 1805 0.05 0.062
Taiwan 309 1895 0.06 0.056

Sum  or average 95,880 970 6.04 5.47

(Table 4). Compared with GPP densities in China, relatively high
values of global GPP (974–1619 g C m−2 yr−1) occurred in ever-
green broadleaf forests, deciduous broadleaf forests, and croplands.
Most of the vegetation types, such as evergreen needleleaf forests,
deciduous needleleaf forests, mixed forests, woody savannas,
and permanent wetlands showed regional GPP densities that
were higher than global GPP by a factor of 1.74–1.98. China’s GPP
simulation was relatively low when compared with global GPP in
a terrestrial ecosystem. This further proved that a high proportion

of sparsely vegetated areas, 24% of the whole land area (Table 4),
accounted for the low GPP in Chinese land.

3.3. Seasonal patterns of GPP

Our estimates showed that GPP over the terrestrial ecosystems
in China exhibited strong seasonal fluctuations (Fig. 7). The seasonal
patterns of GPP and its spatial variability reflected the controlling
effects of the climate conditions. Because of the various climatic

Table 4
Estimations of total GPP amount and average GPP densities under different land coverage from 2000 to 2009. Global GPP density that was  unpublished data was  referred as
a  comparison.

Vegetation type Area (100 km) GPP (Pg C yr−1) GPP density (g C m−2 yr−1) STD (g C m−2 yr−1) CV Global GPP density (g C m−2 yr−1)

ENF 847 0.08 992 77 0.058 528
EBF  2472 0.35 1430 119 0.059 1619
DNF  776 0.06 829 57 0.068 460
DBF  1625 0.18 1083 55 0.052 1100
MF  9321 1.19 1273 68 0.056 731
CSH  1513 0.12 775 58 0.079 510
OSH  3487 0.09 244 19 0.068 273
WS  6020 0.83 1373 76 0.056 768
SAV  177 0.01 703 67 0.094 864
GL  23,146 0.88 382 34 0.088 402
PW  542 0.07 1332 81 0.065 672
CL  15,651 1.31 839 55 0.070 690
UBU  765 0.06 804 58 0.076 713
CRP/NVM 5848 0.68 1157 64 0.057 974
SNI  856 0.01 95 40 0.075 59
BSV  22,834 0.11 50 9 0.058 186

Sum  or average 95,880 6.04 835 659

Abbreviations: evergreen needleleaf forest (ENF), evergreen broadleaf forest (EBF), deciduous needleleaf forest (DNF), deciduous broadleaf forest (DBF), mixed forest (MF),
closed  shrublands (CSH), open shrublands (OSH), woody savannas (WS), savannas (SAV), grasslands (GL), permanent wetlands (PW), croplands (CL), Urban and built-up
(UBP),  cropland/natural vegetation mosaic (CRP/NVM), snow and ice (SI), and barren or sparsely vegetated (BSV).
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Fig. 7. Seasonal distributions of GPP (g C m−2) predicted by the EC-LUE model during
the period from 2000 to 2009.
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Fig. 8. Comparison between the seasonal patterns of gross primary production (GPP,
g  C m−2) under different land use/coverage for evergreen needleleaf forest (ENF),
evergreen broadleaf forest (EBF), deciduous needleleaf forest (DNF), deciduous
broadleaf forest (DBF), mixed forest (MF), closed shrublands (CSH), open shrublands
(OSH), woody savannas (WS), savannas (SAV), grasslands (GL), permanent wetlands
(PW), croplands (CL), Urban and built-up (UBP), natural vegetation mosaic (NVM),
snow and ice (SI), and barren or sparsely vegetated (BSV).

zones and vegetation distributions, the regional GPP temporal pat-
terns varied from east to west and from north to south (Fig. 7). In the
spring (March–May), the southeast significantly assimilated carbon
with GPP values reaching 900 g C m−2 season−1 since the grow-
ing season started in these regions. Because Taiwan and Hainan
are dominated by evergreen forests, these ecosystems also assimi-
lated carbon due to mild temperatures and moist conditions during
the spring in these regions. The south of Brahmaputra areas also
assimilated some carbon in the spring because of a surplus of pre-
cipitation, relatively warm temperatures and high radiation. By
contrast, the barren or sparsely vegetated grassland and mixed
forests, a late green up and water deficits led to a low GPP in the
vast northern regions. In the summer (June–August), the middle
and lower reaches of the Yangtze River regions exhibited increasing
GPP values due to favorable temperature and soil moisture condi-
tions. The vast majority of northwestern landscapes, including the
Qinghai-Tibet Plateau and Inner Mongolian grasslands, exhibited
much lower GPP values due to sparse vegetation and precipita-
tion deficits. In the fall (September–November), the GPP values
of the southeast regions substantially decreased relative to the
GPP in the summer because vegetation began to senesce and days
became shorter. The North China plain had very low GPP values
less than 300 g C m−2 season−1 due to crop harvesting. In the win-
ter (December–February), the majority of China had little or no
photosynthesis because the canopies of most ecosystems were dor-
mant. The spatial patterns and magnitude of GPP in the winter were
similar to those of the spring.

Fig. 8 shows the trajectories of the spatially averaged GPP  for
different land coverage during the period from 2000 to 2009.
Deciduous needleleaf forests, deciduous broadleaf forests and
savannas had the largest inter-annual variability in the spatially
averaged GPP with peaks ranging from 353 g C m−2 month−1 to
456 g C m−2 month−1. Mixed forests, natural vegetation mosaics,
croplands, and closed shrublands had relatively low GPP peaks
(101–195 g C m−2 month−1). Savannas and wetlands had inter-
mediate inter-annual variability. Evergreen needleleaf forests,
evergreen broadleaf forests, and permanent wetlands had the least
variability. The similar trends of monthly distribution of GPP among
various vegetations were found in the typical U.S. ecosystems sim-
ulated by a regression tree approach (Xiao et al., 2010). On average,
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the monthly total GPP between June and August accounted for
48.8% of the annual production, whereas the monthly total GPP
between November and February contributed only 13.1% in this
study. Because the solar radiation is abundant and the plants thrive
between June and August, maximum vegetation production occurs
during this period. By contrast, low solar radiation and a mini-
mum temperature limits plant growth from December to February.
For example, the plants north of the Qinling Mountains normally
stopped growing from December to February, the light use effi-
ciency in the southern part of these mountain regions during the
relative period was much lower than in summer, and the plantation
growth was mainly affected by temperature resulting in low vege-
tation production during these three months. Hwang et al. (2008)
indicated that precipitation is concentrated in the short monsoon
season in East Asia, which reduces plants water availability in
the dry season and decreased vegetation production. Therefore,
the temporal variability of spatially averaged GPP showed a clear
dependence on biome types and climate fluctuations, and both spa-
tially averaged and integrated GPP showed inter-annual variability
for each biome.

3.4. Inter-annual variability of GPP

The annual GPP varied between 5.63 Pg C yr−1 and 6.39 Pg C yr−1

over the period from 2000 to 2009, with a mean of 6.04 Pg C yr−1

(Fig. 8). The EC-LUE model and the MODIS GPP product estimated
global GPP at 110.5 Pg C yr−1 (Yuan et al., 2010) and 113 Pg C yr−1,
respectively, and the diagnostic models estimated the global GPP
to be 123 Pg C yr−1 (Beer et al., 2010). This study indicated that GPP
in China accounted for 4.90–6.29% of the world’s total terrestrial
GPP. Annual GPP exhibited positive and negative anomalies for each
year, where the lowest GPP was found in 2000 and then kept rising
from 2000 to 2007, with a decrease in 2005. GPP values began to
decrease during the period from 2007 to 2009 but were still higher
than that of 2005. This tendency agreed with the inter-annual vari-
ability of MODIS GPP product and annual GPP estimation in Yuan
et al. (2010) (Fig. 9). Averagely, the predicted GPP from Yuan et al.
(2010) was 5.38 Pg yr−1 in China which was similar to MODIS GPP
(5.47 Pg yr−1), and 10% lower than the value in this study. In gen-
eral, China’s terrestrial GPP tended to increase from 2000 to 2009,
which is in agreement with the seasonal and inter-annual vari-
ability of GPP at Takayama in Japan simulated by BEPS ecosystem
model (Higuchi et al., 2005), a similar tendency to global vegeta-
tion production for the northern high latitudes (Zhao and Running,
2010).
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Fig. 10. Spatial distribution of the variability in GPP estimates as represented by
(a)  the standard deviation (SD, g C m−2 yr−1) of model GPP estimates in a grid cell,
and (b) the coefficient of variance (CV) of model GPP estimated in a grid cell. The
coefficient of variance is determined by dividing the standard deviation by the mean
of  the model GPP estimates within a grid cell.

The standard deviation and the coefficient of variation were
used to indicate absolute inter-annual variability (AIAV) and rel-
ative inter-annual variability (RIAV) of the GPP, respectively.
Relatively high AIAVs occurred for the evergreen broadleaf forests,
permanent wetlands, and evergreen needleleaf forests with a SD of
119 g C m−2 yr−1, 81 g C m−2 yr−1 and 77 g C m−2 yr−1, respectively
(Table 4). Open shrublands and grasslands showed AIAVs with a
STD of 19 g C m−2 yr−1 and 34 g C m−2 yr−1, respectively. Gener-
ally, the AIAV of the GPP was large where the GPP was high and
small where the GPP was  low (Fig. 10a; Table 4). The AIAV of the
GPP among various land cover types had significant correlations
with the AIAVs in air temperature (R2 = 0.66, P < 0.05), precipita-
tion (R2 = 0.71, P < 0.05), and NDVI (R2 = 0.83, P < 0.05), respectively,
across all the biomes, indicating that vegetation index and meteo-
rological parameters are important factors affecting AIVI of GPP in
China. The observed inter-annual variability in GPP at the Takayama
was also influenced by changes in vegetation characteristics such
as leaf area index (Higuchi et al., 2005).

The RIAVs of the GPP were less than 10% for all the biomes
(Table 4). There were large RIAVs with a CV of 5.9%, 5.2% and
5.6% in the evergreen broadleaf forests, deciduous broadleaf forest,
and mixed forests, respectively. The maximum RIAV occurred for
savannas and grasslands with a CV of 9.4% and 8.8%, respectively
(Table 4). The trend was  similar to the spatial distribution of the
variability in GPP estimates as represented by the coefficient vari-
ance of model GPP estimated in a grid cell (Fig. 10b). No significant
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relationship was found between the RIAV of the annual GPP and
the vegetation index and multiple meteorological factors in this
study. Fang et al. (2001) used an annual mean NDVI data set over
China to quantify temporal net primary production (NPP) variabil-
ity relative to precipitation variation, finding that the correlation
between CVs for NDVI and or NPP and precipitation were identi-
fied as statistically significant. Compared with Fang et al. (2001),
opposite trend between inter-annual variability in NPP and pre-
cipitation was observed by Knapp and Smith (2001) from 11 Long
Term Ecological Research sites across North America, aboveground
NPP being responded more strongly to wet than to dry years. The
inter-annual variability of GPP that resulted from the variation of
precipitation and the vegetation index may  be due to climate vari-
ability and disturbances.

4. Conclusions

Based on EC measurements and remote sensing data, the EC-
LUE model was capable of tracking seasonal dynamics and spatial
variations in GPP estimation of various vegetation types in China’s
terrestrial ecosystem and explained about 62–79% of the GPP varia-
tions of C4 and C3 vegetations, respectively. The annual GPP in China
varied between 5.63 Pg C yr−1 and 6.39 Pg C yr−1 during the period
from 2000 to 2009, with a mean value of 6.04 Pg C yr−1, which
accounted for 4.90–6.29% of the global GPP. Similar distribution
was found between EC-LUE GPP and MODIS product except some
provinces such as Xinjiang, Tibet, and Ningxia in the northwest-
ern China. The spatio-temporal distribution of GPP was  associated
with land cover types and climate zones. Vegetation indexes
(e.g., NDVI) and meteorological factors (e.g., air temperature and
precipitation) significantly (R2 = 0.66–0.83, P < 0.05) affected the
absolute inter-annual variability of GPP. Five of the most productive
vegetation types including croplands, mixed forests, grasslands,
woody savannas, and natural vegetation mosaics, assimilated 81%
of the terrestrial carbon in China. Monthly GPP between June
and August accounted for 48.8% of the annual vegetation produc-
tion, whereas that between November and February contributed
only 13.1%. In this study, most of the vegetation types showed
higher regional GPP densities than global GPP densities by a fac-
tor of 1.74–1.98, but a high proportion of sparsely vegetated
areas resulted in the low GPP for Chinese terrestrial ecosys-
tems.
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