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Abstract—Leaf area index (LAI) is an important vegetation bio-
physical variable and has been widely used for crop growth mon-
itoring and yield estimation, land-surface process simulation, and
global change studies. Several LAI products currently exist, but
most have limited temporal coverage. A long-term high-quality
global LAI product is required for greatly expanded application
of LAI data. In this paper, a method previously proposed was
improved to generate a long time series of Global LAnd Surface
Satellite (GLASS) LAI product from Advanced Very High Reso-
lution Radiometer (AVHRR) and Moderate Resolution Imaging
Spectroradiometer (MODIS) reflectance data. The GLASS LAI
product has a temporal resolution of eight days and spans from
1981 to 2014. During 1981–1999, the LAI product was generated
from AVHRR reflectance data and was provided in a geographic
latitude/longitude projection at a spatial resolution of 0.05◦. Dur-
ing 2000–2014, the LAI product was derived from MODIS sur-
face-reflectance data and was provided in a sinusoidal projection
at a spatial resolution of 1 km. The GLASS LAI values derived
from MODIS and AVHRR reflectance data form a consistent data
set at a spatial resolution of 0.05◦. Comparison of the GLASS
LAI product with the MODIS LAI product (MOD15) and the
first version of the Geoland2 (GEOV1) LAI product indicates that
the global consistency of these LAI products is generally good.
However, relatively large discrepancies among these LAI prod-
ucts were observed in tropical forest regions, where the GEOV1
LAI values were clearly lower than the GLASS and MOD15
LAI values, particularly in January. A quantitative comparison
of temporal profiles shows that the temporal smoothness of the
GLASS LAI product is superior to that of the GEOV1 and MODIS
LAI products. Direct validation with the mean values of high-
resolution LAI maps demonstrates that the GLASS LAI values
were closer to the mean values of the high-resolution LAI maps
(RMSE = 0.7848 and R2 = 0.8095) than the GEOV1 LAI val-
ues (RMSE = 0.9084 and R2 = 0.7939) and the MOD15 LAI
values (RMSE = 1.1173 and R2 = 0.6705).

Index Terms—Advanced Very High Resolution Radiometer
(AVHRR), Global LAnd Surface Satellite (GLASS) products, leaf
area index (LAI), Moderate Resolution Imaging Spectroradiome-
ter (MODIS), neural networks, time series, validation.
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I. INTRODUCTION

L EAF area index (LAI) is defined as one-half the total green
leaf area per unit of horizontal ground surface area and is

called true LAI [1]. The true LAI multiplied by the clumping
index, which quantifies the level of foliage grouping within
distinct canopy structures relative to a random distribution
[2], is called effective LAI. LAI is an important vegetation
biophysical variable and has been widely used for crop growth
monitoring and yield estimation, land-surface process simula-
tion, and many other global change studies. The estimation
of LAI from remote sensing data is the only feasible way to
generate LAI products at regional and global scales.

Many methods have been developed to retrieve LAI from
satellite remote sensing data [3], [4]. In general, two methods
have been used: empirical and physical. The empirical methods
are based on statistical relationships between LAI and spectral
vegetation indexes, which are calibrated for distinct vegeta-
tion types using field measurements of LAI and reflectance
data recorded by a remote sensor or simulations with canopy
radiation models [5]. The physical methods are based on the
inversion of canopy radiative transfer models through iterative
minimization of a cost function [6], [7], the lookup table
(LUT) method [8], or various machine learning methods [9].
Inversion techniques based on the iterative minimization of a
cost function require hundreds of runs of the canopy radiative
transfer model for each pixel and are therefore computationally
exceedingly demanding. For practical applications, the LUT
and artificial neural network methods are two popular inversion
techniques that are based on a previously computed reflectance
database.

Currently, multiple global LAI products have been generated
from various types of satellite remote sensing data [10], [11].
These products are retrieved using various methods and possess
different spatial and temporal resolutions. Some major global
LAI products are listed in Table I. A comparison of these
LAI products indicates that the global consistency of the first
version of the Geoland2 (GEOV1) LAI product and the Mod-
erate Resolution Imaging Spectroradiometer (MODIS) LAI
product (MOD15) is good in most situations [12] and that the
CYCLOPES, MOD15, and GLOBCARBON LAI values agree
better over croplands and grasslands than over forests [13].
Qualitative analysis of temporal profiles shows that the
CYCLOPES, MOD15, GLOBCARBON, and GEOV1 LAI
products display consistent seasonal variations over most vege-
tation types [12], [13]. Direct validation shows that the MOD15
and CYCLOPES LAI products are the most accurate over grass
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TABLE I
CHARACTERISTICS OF MAJOR GLOBAL LAI PRODUCTS

and croplands, but that large uncertainties are observed for these
products over evergreen broadleaf forests [13]–[15]. Consider-
able progress has been made, and different products have been
extensively used in various applications [4]. However, many
issues remain in generating these LAI products from satellite
data, and these have a direct impact on quality and accuracy.

First, these LAI products are routinely generated from re-
mote sensing data acquired only at a specific time. Because
limited information is used for the inversion process, these
products are not spatially and temporally continuous. They are
frequently missing in winter over northern latitudes and over
the Equatorial belt [13] and exhibit many time-series fluctu-
ations, particularly during vegetation growing seasons [16].
These LAI products are also inaccurate for some vegetation
types such as evergreen broadleaf forest [13], [17], [18]. Low
accuracy and poor quality in many cases among existing LAI
products certainly call for improvements and new products. It
is easy to improve the quality (e.g., smoothing, missing data)
of existing products, but accuracy cannot be improved without
generating a new product. One potential solution to these
problems is to retrieve LAI using multitemporal signatures.
Xiao et al. [7] developed a temporally integrated inversion
method to estimate LAI from MODIS reflectance time-series
data. The parameters of a double-logistic LAI temporal-profile
model coupled with a radiative-transfer model were estimated
in such a way that the surface reflectances simulated with
the radiative-transfer model optimally matched the MODIS re-
flectance time-series data from the growing seasons. Smoothed
LAI profiles with improved accuracy were then reconstructed
using the LAI temporal-profile model parameters. Liu et al.
[19] developed a similar method to retrieve LAI by combining
the MODIS albedo product with a dynamic leaf model. The
results showed that the seasonal cycle of the directly retrieved
leaf areas was smooth and consistent with both observations
and current understanding of the processes controlling leaf area
dynamics [19]. These methods assumed that all observations
were available in advance and were therefore suitable for
historical data analysis. To monitor rapid land-surface changes,
Xiao et al. [20] developed a real-time inversion method to
estimate LAI using MODIS reflectance time-series data. As
new observations arrived, an ensemble Kalman filter was used

to update the LAI recursively by combining predictions from
dynamic models and MODIS reflectance data. In the absence
of new observations, the biophysical variables could be propa-
gated using the dynamic models. All these studies have demon-
strated the ability to retrieve biophysical parameters supplied
by the time series of remote sensing observations.

Second, existing LAI products are based mainly on individ-
ual satellite data that usually cover the same short periods as
the satellite missions. For example, the MOD15 LAI product
is based on TERRA/MODIS data, the third-generation Global
Inventory Modeling and Mapping Studies (GIMMS3g) LAI
product is based on Advanced Very High Resolution Radiome-
ter (AVHRR) data, and the GEOV1 LAI product is based on
SPOT/VEGETATION data. Efforts are being made to produce
the climate data record from multiple satellite data sets. The
climate data record is defined as a time series of measurements
of sufficient length, consistency, and continuity to describe
climate variability and change [25]. Using neural networks and
temporal filtering techniques, Verger et al. [26] developed a
multisensor fusion approach to improve the spatiotemporal con-
tinuity, consistency, and accuracy of current satellite products.
The fusion product derived from available VEGETATION and
MODIS observations was able to fill in most of the missing
LAI values with improved temporal smoothness and better
agreement with ground measurements. The multisensor fusion
approach may contribute to generating continuous long-term
Earth System Data Records from remote sensing data collected
from several sensors [26]. However, most global LAI products
still involve a short time series [13]. There is a strong need for
a robust algorithm to generate a long-term LAI product from
multiple satellite data.

To exploit fully the potential of multitemporal remote
sensing data, Xiao et al. [27] developed a method to estimate
LAI from MODIS surface-reflectance time-series data using
general regression neural networks (GRNNs). Unlike existing
neural network methods that use only remote sensing data ac-
quired at a specific time to retrieve LAI, the preprocessed
MODIS reflectance data for a one-year period were input into the
GRNNs to estimate the one-year LAI profiles. Extensive vali-
dations have demonstrated that this method is able to estimate
temporally continuous LAI profiles with much improved
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accuracy compared with that of MOD15 and CYCLOPES
[27]. Because of the excellent performance of this method in
retrieving LAI from MODIS reflectance time-series data, it was
extended in this study to retrieve LAI from AVHRR reflectance
time-series data. Moreover, a processing strategy was proposed
to generate a long time series of temporally continuous Global
LAnd Surface Satellite (GLASS) LAI product (1981–2014)
from MODIS and AVHRR reflectance time-series data. The
consistency of GLASS LAI values derived from AVHRR
and MODIS reflectance data was evaluated. This paper also
analyzes the discrepancies between the GLASS LAI product
and other existing global LAI products, including MOD15
and GEOV1 LAI products. The accuracy of the GLASS LAI
product was evaluated against high-resolution LAI maps.

The organization of this paper is as follows. Section II
describes the observed satellite data, existing global LAI prod-
ucts, and LAI ground measurements. Section III describes the
algorithm that uses GRNNs for LAI retrieval from MODIS
and AVHRR reflectance time-series data and the processing
strategy to generate a long time series of temporally continuous
GLASS LAI product. The method used to evaluate the GLASS
LAI product is also described in this section. The results of a
consistency analysis between the GLASS LAI values derived
from AVHRR and MODIS reflectance data, a comparison be-
tween the GLASS LAI product and other existing global LAI
products, and a direct validation of the GLASS LAI product
against high-resolution LAI maps are presented in Section IV;
discussions are presented in Section V, and conclusions are
drawn in Section VI.

II. DATA AND PREPROCESSING

A. MODIS and AVHRR Surface Reflectance Data

The MODIS surface reflectance product (MOD09A1), in
a sinusoidal projection system, was derived from the latest
version (Collection 5) and was downloaded from http://reverb.
echo.nasa.gov/reverb/. The MOD09A1 product has been pro-
duced since 2000 at a 500-m spatial resolution and an eight-
day temporal sampling period [28]. The AVHRR reflectance
data were from NASA’s Land Long-Term Data Record (LTDR)
project [29]. The LTDR AVHRR reflectance product, with a
spatial resolution of 0.05◦ and a daily temporal sampling pe-
riod, uses a geographic latitude/longitude projection. The latest
version (Version 3) was used in this study. The LTDR AVHRR
reflectance product for 1981–1999 was downloaded from http://
ltdr.nascom.nasa.gov/, and the product for 2003–2004 was pro-
vided by Dr. Eric Vermote.

Although the quality of the MODIS and LTDR AVHRR
reflectance data was greatly improved, some cloudy or partially
cloudy pixels remained in the data, and reflectance data were
still missing for some days in the series. The MODIS and
AVHRR reflectance data were preprocessed to remove cloud
contamination and fill any gaps using a new time-series cloud-
detection (TSCD) algorithm [30]. The TSCD algorithm is based
on the assumptions of relatively stable surface reflectance and
of rapid temporal variations in reflectance due to cloud con-
tamination. Cloud-contaminated data were removed using a
temporal spatial filter method that integrates temporal, spatial,

spectral, and flag information, and missing data were filled in
using an optimum interpolation algorithm to obtain continuous
and smooth surface reflectance values. The validation results
demonstrated that the TSCD algorithm performs very well, par-
ticularly when the land surface is stable or slowly changing [25].

In this paper, MODIS and AVHRR reflectance time series in
the red and near-infrared spectral bands were used to estimate
LAI profiles. The MODIS reflectance data were aggregated
to a 1-km resolution using an average method to maintain a
spatial resolution consistent with the MOD15 and CYCLOPES
LAI products. The maximum-value composite (MVC) ap-
proach [31] was used to composite the daily AVHRR surface-
reflectance data into eight-day intervals to maintain a temporal
resolution consistent with the MODIS surface-reflectance data.
The MVC approach selected the AVHRR reflectance data with
the highest normalized difference vegetation index (NDVI) over
each eight-day time interval.

B. Global LAI Products

This section describes the main characteristics of the
MOD15, CYCLOPES, GEOV1, and GLASS LAI products
investigated in this study. A summary of these with their main
characteristics can be found in Table I.

The MOD15 LAI product (MOD15A2) has been available
since 2000 and is provided in a sinusoidal projection at a 1-km
spatial resolution and an eight-day time step [8]. The latest
version of the MOD15 LAI product is Collection 5 and is used
in this study. The MOD15 LAI retrieval algorithm includes a
main algorithm and a backup algorithm. The main algorithm is
based on LUTs simulated from a 3-D radiative-transfer model
for the eight main biome classes according to MODIS land
cover and the backup algorithm estimated LAI from biome-
specific LAI-NDVI relationships [22]. The MOD15 LAI prod-
uct provides quality control (QC) information to indicate the
quality of LAI values. Among them, SCF_QC are 3 binary
bits indicating LAI algorithms. If bit combinations of SCF_QC
are 000 or 001, the LAI values are retrieved from the main
algorithm. If bit combinations of SCF_QC are 010 or 011, the
main algorithm fails due to poor geometry or other problems,
and the backup algorithm is used to estimate LAI values [8].
Generally, LAI estimates using the backup algorithm are of
lower quality, mainly because of residual clouds and poor
atmospheric correction [14].

The CYCLOPES LAI product, with a spatial resolution of
1/112◦ (about 1 km at the Equator) and a ten-day temporal
sampling period, was generated from SPOT/VEGETATION
sensor data for 1999–2007 [9]. This product was projected in
plate carrée. The algorithm used to estimate CYCLOPES LAI
values was based on training backpropagation neural networks
with a PROSPECT+SAIL radiative-transfer-model simulation
[9]. The GEOV1 LAI product has been available since 1998
from http://www.geoland2.eu/. The product is also provided
in a plate carrée projection at 1/112◦ spatial resolution and
a ten-day frequency. The GEOV1 LAI product was derived
from SPOT/VEGETATION sensor data using backpropagation
neural networks that were trained by fused and scaled “best
estimates” of LAI from the MOD15 and CYCLOPES products

http://reverb.echo.nasa.gov/reverb/
http://reverb.echo.nasa.gov/reverb/
http://ltdr.nascom.nasa.gov/
http://ltdr.nascom.nasa.gov/
http://www.geoland2.eu/
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and the SPOT/VEGETATION nadir surface reflectance values
over the Benchmark Land Multisite Analysis and Intercom-
parison of Products (BELMANIP) network of sites [24]. The
CYCLOPES and GEOV1 LAI products were reprojected onto
the sinusoidal projection used in the MOD15 and GLASS
LAI products using the General Cartographic Transforma-
tion Package map projection library [32] and resampled to a
1-km spatial resolution using the nearest-neighbor resampling
method.

The GLASS LAI product has a temporal resolution of eight
days and spans from 1981 to 2014. For 1981–1999, the LAI
product was generated from LTDR AVHRR reflectance data.
It was provided in a geographic latitude/longitude projection
at a spatial resolution of 0.05◦ (about 5 km at the Equator). For
2000–2014, the LAI product was derived from MODIS surface-
reflectance data. It was provided in a sinusoidal projection
at a spatial resolution of 1 km. The GLASS LAI product is
produced and released by the Center for Global Change Data
Processing and Analysis of Beijing Normal University (http://
www.bnu-datacenter.com/). The latest version of the GLASS
LAI product is version 3.0 and was used in this study.

C. Field LAI

LAI ground measurements were used in this study to vali-
date the accuracy of the GLASS, MOD15, and GEOV1 LAI
products. The LAI ground measurements were obtained using
the LAI-2000 Plant Canopy Analyzer [33], by tracing the
radiation and architecture of canopies [34], or by hemispherical
photographs processed using the CAN_EYE software package
[35]. According to guidelines defined by the CEOS/WGCV
LPV subgroup, a comparison can be performed by upscaling
the LAI ground measurements to the moderate-resolution prod-
ucts using high-resolution remotely sensed imagery [36]. An
empirical transfer function between high-resolution reflectance
data and LAI ground measurements for a site was established
to derive a high-resolution LAI map that was then aggregated
to the moderate-resolution products [13]. Forty-seven high-
resolution LAI maps over 28 sites were used in this study.
Detailed information about these validation sites is shown
in Table I of the supplemental material. Most of the high-
resolution LAI maps were reported by Garrigues et al. [13]
and Camacho et al. [12]. These data mainly come from inter-
national initiatives such as VALERI (http://w3.avignon.inra.fr/
valeri) and BigFoot [37]. The accuracy of these high-resolution
LAI maps depends on ground measurement errors, uncertain-
ties in the high-resolution reflectance data, and sampling and
upscaling errors [38]. For high-resolution LAI maps corrected
for clumping and nongreen elements, an absolute uncertainty
smaller than 1 LAI unit can be expected for most sites [39].

In addition, two sites (Agro and Fermi) with a time series of
LAI field measurements were selected to evaluate the seasonal
changes in these LAI products. The Agro (40.01◦ N, 88.29◦ W)
and Fermi (41.86◦ N, 88.22◦ W) sites are agricultural sites in the
Midwestern United States that are part of the network of eddy
covariance flux towers associated with AmeriFlux. Quantita-
tive evaluation of heterogeneity using high-resolution satellite
images demonstrated that the areas surrounding the Agro and

Fermi sites were extremely homogeneous, which met the ho-
mogeneity requirement and minimized issues associated with
spatial representativeness in point-to-pixel comparisons [40].

III. METHODOLOGY

The method proposed in this study uses GRNNs to re-
trieve LAI from time-series MODIS/AVHRR reflectance data.
The GRNNs are trained with the fused time-series LAI from
MOD15 and CYCLOPES LAI products and the preprocessed
MODIS/AVHRR reflectance data over the BELMANIP sites.
A rolling processing approach using the GRNNs was ap-
plied to generate a long time series of temporally continu-
ous GLASS LAI product from the preprocessed time-series
MODIS/AVHRR reflectance data. The quality and accuracy of
the GLASS LAI product were evaluated. A flowchart outlining
this method is shown in Fig. 1.

A. LAI Inversion From MODIS and AVHRR Reflectance Data

The method developed by Xiao et al. [27] was used to
retrieve LAI from MODIS reflectance data in this study. The
method retrieves LAI profiles from MODIS reflectance time-
series data using GRNNs that were trained using the fused time-
series LAI values from MOD15 and CYCLOPES LAI products
and the preprocessed time-series MODIS reflectance over the
BELMANIP sites. Unlike existing neural network methods that
use only remote sensing data acquired at a specific time to
retrieve LAI, the preprocessed MODIS reflectance data from
an entire year were entered into the trained GRNNs to estimate
the one-year LAI profile for each pixel [27].

Because of its excellent performance in retrieving LAI from
MODIS reflectance time-series data, the method was extended
in this study to estimate LAI profiles from AVHRR reflectance
time-series data. A database was generated from the MOD15
and CYCLOPES LAI products as well as the preprocessed
LTDR AVHRR reflectance data for the BELMANIP sites from
2003 to 2004 to train the GRNNs. For each BELMANIP site,
3 × 3 pixels of the preprocessed AVHRR reflectance data and
the MOD15 and CYCLOPES LAI values projected into the
3 × 3 pixels of the preprocessed AVHRR reflectance data using
the nearest-neighbor sampling technique were extracted.

Because of cloud, atmospheric, and snow contamination, the
MOD15 and CYCLOPES LAI profiles exhibit time-series fluc-
tuations during the vegetation growing seasons, and some LAI
values are missing. The MOD15 and CYCLOPES LAI values
were smoothed and gap filled using the multistep Savitzky–
Golay (SG) filtering procedure [20]. For each data value, the SG
filter fits a quadratic polynomial function to all 2k + 1 points
in a window using the least squares method, where k is the
window width and is set to 5 in this study. The CYCLOPES
LAI retrieval algorithm provides an effective LAI, whereas the
MOD15 retrieval algorithm provides a true LAI. The clumping
index derived from multiangular POLDER 3 satellite data [41]
was used to convert effective CYCLOPES LAI into true LAI,
which was then fused with the MOD15 LAI. The fused LAI
is a linear weighted sum of the MOD15 LAI and the true

http://www.bnu-datacenter.com/
http://www.bnu-datacenter.com/
http://w3.avignon.inra.fr/valeri
http://w3.avignon.inra.fr/valeri
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Fig. 1. Schematic description of the method used to generate the GLASS LAI product.

CYCLOPES LAI [27]. The fused LAI values were then aggre-
gated to 0.05◦ spatial resolution using a spatial-average method.
The average values over 0.05◦ pixels were computed if more
than 70% of the 1-km pixels projected into the 0.05◦ pixels had
fused LAI values.

The aggregated LAI time-series values and the corre-
sponding preprocessed AVHRR reflectance values over the
BELMANIP sites for 2003 and 2004 were used to train GRNNs.
The fundamental formulation of the GRNNs with Gaussian
kernel functions can be expressed as follows [42]:

Y′(X) =

n∑
i=1

Yi exp
(
− D2

i

2σ2

)

n∑
i=1

exp
(
− D2

i

2σ2

) (1)

where D2
i = (X−Xi)

T
(X−Xi) represents the squared

Euclidean distance between the input vector X and the ith
training input vector X i, Y i is the output vector corresponding

to vector X i, Y ′(X) is the estimate corresponding to vector X ,
n is the number of samples, and σ is a smoothing parameter.
The input vector X of the GRNNs used to retrieve LAI pro-
files from the preprocessed AVHRR reflectance data includes
preprocessed AVHRR time-series reflectance values in the red
(R) and near-infrared (NIR) bands (for a one-year period);
that is, X = (R1, R2, . . . , R46,NIR1,NIR2, . . . ,NIR46)

T and
contains 92 components. The output vector Y′ = (LAI1,LAI2,
. . . ,LAI46)T is the corresponding LAI time series for the year
and contains 46 components. The smoothing parameter σ is
the only free parameter in the GRNN formulation. Therefore,
GRNN training essentially involves optimizing the smoothing
parameter. In this paper, the holdout method [42] was used
to find the optimal value of the smoothing parameter. The
trained GRNNs were then used to retrieve LAI from the pre-
processed AVHRR reflectance data. The preprocessed AVHRR
reflectance data from an entire year were entered into the
trained GRNNs to estimate the one-year LAI profile for each
pixel.
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Fig. 2. Rolling processing strategy to generate temporally continuous GLASS
LAI product.

B. Processing Strategy for GLASS LAI Generation

The retrieval method previously described used GRNNs to
retrieve LAI profiles from MODIS and AVHRR reflectance
time-series data. Although the method was used to estimate
temporally continuous and smooth LAI profiles over one year,
the LAI profiles of two adjacent years were not necessarily con-
tinuous. To generate a long time series of temporally continuous
high-quality global LAI product using this method, a rolling
processing strategy was developed in this study.

As shown in Fig. 2, two groups of GRNNs were alter-
nately used to retrieve LAI from MODIS/AVHRR reflectance
data. For the first group of GRNNs, the input vector was
the preprocessed MODIS/AVHRR reflectance data for a one-
year period (from Julian day 1 to 361), and the output vector
was the corresponding LAI time series for the year. For the
second group of GRNNs, the input vector was the preprocessed
MODIS/AVHRR reflectance data from Julian day 185 of a
particular year to Julian day 177 of the next year, and the output
vector was the corresponding LAI time series from Julian day
185 of the particular year to Julian day 177 of the next year.

Based on the rolling processing strategy, two LAI values,
respectively, denoted as LAI1 and LAI2, were retrieved for each
point in time using the two groups of GRNNs. The GLASS
LAI, which is denoted by LAIGLASS, was obtained by a linear
combination of LAI1 and LAI2 as follows:

LAIGLASS = w1LAI1 + w2LAI2 (2)

where w1 and w2 are the weights for LAI1 and LAI2, re-
spectively. Weight w1 was determined in this study using the
following function:

w1(x; a, b, c, d) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, x ≤ a

2
(
x−a
b−a

)2
, a < x ≤ a+b

2

1− 2
(
x−a
b−a

)2
, a+b

2 < x ≤ b

1, b < x ≤ c

1− 2
(
x−d
c−d

)2
, c < x ≤ c+d

2

2
(
x−d
c−d

)2
, c+d

2 < x ≤ d

0, x > d

(3)

where x represents the Julian day of the year, and a, b, c,
and d are four parameters used to determine the shape of the
function. The four parameters were determined so that the
smallest weights were assigned to LAI values at the beginning
and end of the LAI profiles (for a one-year period) and the
largest weights to LAI values in the middle of the LAI profiles.
In this paper, a = 9, b = 169, c = 193, d = 353, and weight w2

was calculated as follows:

w2 = 1− w1. (4)

Fig. 3. Weights used to combine the LAI values retrieved using the two groups
of GRNNs.

Fig. 4. Time series of GLASS LAI values obtained by a linear combination of
LAI values retrieved using the two groups of GRNNs at a deciduous broadleaf
forest site for 2008 and 2009.

Fig. 3 shows the curves for weights w1 and w2. It can be
observed that the values in the middle of the LAI profiles were
assigned larger weights than those on either side of the LAI
profiles, whether the LAI profiles were retrieved using the first
or the second group of GRNNs.

Fig. 4 shows a time series of GLASS LAI values obtained
by a linear combination of the LAI values retrieved using the
two groups of GRNNs at a deciduous broadleaf forest site
(25.2875◦ S, 59.8289◦ W) for 2008 and 2009. At the end of
2008 and at the beginning of 2009, there was a small jump be-
tween the two LAI profiles retrieved from MODIS reflectance
time-series data in 2008 and 2009, respectively, using the first
group of GRNNs. At the same time, a continuous LAI profile
was retrieved from MODIS reflectance time-series data from
Julian days 185–361 of 2008 and Julian days 1–177 of 2009
using the second group of GRNNs. The LAI profiles retrieved
using the two groups of GRNNs were combined using (2) to
generate a continuous and smooth GLASS LAI profile.

C. Comparison and Validation

The LAI values derived from LTDR AVHRR reflectance data
were compared with those derived from MODIS reflectance
data to evaluate the consistency of GLASS LAI values based
on different sensor data. A cross-comparison was performed
to evaluate the spatial and temporal consistencies between the
GLASS LAI product and other existing global LAI products,
including MOD15 and GEOV1 LAI products. The accuracy of
the GLASS LAI product was also evaluated against ground-
based high-resolution LAI maps.

In this paper, only valid LAI values of these products
were used for comparison and validation. For the GLASS and
GEOV1 LAI products, all LAI values were considered to be
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valid. For the MOD15 LAI product, the LAI values retrieved
from the backup algorithm were not used for comparison and
validation of the LAI products because of their overall lower
quality originating from residual clouds and poor atmospheric
correction [14]. In other words, only the LAI values retrieved
from the main algorithm (QC < 64) were considered to be
valid.

1) Consistency of GLASS LAI Values Derived From AVHRR
and MODIS Reflectance Data: To assess spatial and temporal
consistencies between the LAI values derived from AVHRR
reflectance data and those retrieved from MODIS reflectance
data, the LAI values retrieved from MODIS reflectance data
were reprojected to the geographic latitude/longitude projection
used for the LAI values derived from AVHRR reflectance data
using nearest-neighbor resampling and were aggregated to a
resolution of 0.05◦ using a spatial-average method. The average
values over the 0.05◦ pixels were computed if more than 70%
of the 1-km pixels projected into the 0.05◦ pixels had valid LAI
values.

A histogram comparison between the LAI values derived
from MODIS reflectance data and those derived from AVHRR
reflectance data from Julian day 185 in 2003 to Julian day 177
in 2004 was performed for each of the eight vegetation classes
according to the MODIS land-cover type climate modeling
grid product (MCD12C1). Month-by-month spatial differences
between LAI values derived from AVHRR reflectance data
and those derived from MODIS reflectance data were analyzed
across different biomes for the one-year period. The LAI dif-
ferences were calculated by subtracting the LAI values derived
from MODIS reflectance data from those derived from AVHRR
reflectance data.

To show the consistency of the time-series trends in the
GLASS LAI values derived from MODIS and AVHRR re-
flectance data, the annual anomalies of the GLASS LAI values
were calculated by subtracting the long-term mean from the
mean annual LAI. The long-term mean in this study was the
arithmetic mean of all mean annual LAI values from 1982
to 2012. In addition, LAI profiles from 1982 to 2012 over
several sites with different land-cover types were also analyzed
to check the temporal consistency of the GLASS LAI values
derived from MODIS and AVHRR reflectance data.

2) Cross-Comparison of GLASS and Other Global LAI
Products: For comparisons of spatial consistency, the GLASS,
MOD15, and GEOV1 LAI products were, respectively, ag-
gregated into a monthly time step by computing a monthly
average from the valid LAI values of each month. The global
maps of mean LAI for these LAI products in January and July
for 2001–2010 were computed to investigate spatial patterns
specific to a given product as well to check the distribution in
space of the missing data. Histograms of the GLASS, MOD15,
and GEOV1 LAI products for 2001–2010 were generated for
each biome type according to the MODIS land-cover type
product (MCD12Q1) to analyze the similarities and differences
among these LAI products.

To compare temporal consistency, the original temporal
resolution for each LAI product was considered. Temporal
profiles of the GLASS, MOD15, and GEOV1 LAI products
were checked over a sample of sites (Table I of the supplemental

material) with different biome classes. To reduce the effects
of coregistration errors among these LAI products and the
inconsistencies associated with differences in the point-spread
function of the reprojected products, the average LAI profiles
over 3 × 3 pixels centered on selected sites were calculated if
more than five of the nine pixels had valid LAI values [12].
For each site, the average LAI profiles over three consecutive
years were compared to provide a qualitative analysis of the
seasonal variations among these LAI products. The specific
years used for comparison were not the same for all sites, but
varied somewhat based on the availability of high-resolution
LAI maps derived from ground measurements. These LAI
profiles were also compared with the mean values of the high-
resolution LAI maps over the 3 km × 3 km regions centered on
the location of each site to analyze the precision of each product
in the time series. The LAI temporal profiles at the center pixel
of the Agro and Fermi sites were compared with the time series
of LAI field measurements to evaluate the seasonal changes in
these LAI products.

With respect to the process of vegetation succession, LAI
continuously varies with time except in the case of disturbances
such as fires, floods, and hurricanes. Therefore, a smooth tem-
poral course of LAI products derived from remote sensing data
can be expected [15]. Currently, temporal smoothness is one
of the most important measures of temporal consistency. As
suggested by Weiss et al. [15], the absolute value of the dif-
ference between the center value for three consecutive product
dates in the time series and the average value corresponding to
two adjacent dates, which is denoted by δLAI, was computed to
quantify the smoothness of the GLASS, MOD15, and GEOV1
LAI products in this study. The smoother the temporal profiles,
the smaller the δLAI values should be.

3) Direct Validation: The GLASS, MOD15, and GEOV1
LAI products were compared with the same set of high-
resolution LAI maps to evaluate differences in LAI magnitude
among these products. The high-resolution LAI maps and the
GLASS, MOD15, and GEOV1 LAI products were aggregated
over 3 km × 3 km regions centered on the location of the vali-
dation sites using the spatial-average method, and the GLASS,
MOD15, and GEOV1 LAI values were linearly interpolated
to the acquisition date of a LAI ground measurement if the
two closest LAI values were within ±10 days of this date. A
total of 48 sites were finally retained and provided 64 ground-
based LAI measurements for which all the GLASS, GEOV1,
and MOD15 LAI products provide valid LAI values. The
discrepancies of each product were quantified by the coeffi-
cient of determination, R-squared (R2), root mean square error
(RMSE), and the mean (μ) and standard deviation (σ) of the
difference between these LAI products and the high-resolution
LAI maps.

IV. RESULTS

A. Consistency of GLASS LAI Values Derived From AVHRR
and MODIS Reflectance Data

Fig. 5 shows a histogram comparison between the GLASS
LAI values derived from MODIS reflectance data and those
derived from AVHRR reflectance data from Julian day 185
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Fig. 5. Statistical distributions of global LAI values derived from MODIS reflectance data and those derived from AVHRR reflectance data from Julian day 185
in 2003 to Julian day 177 in 2004 for different vegetation classes.

in 2003 to Julian day 177 in 2004 for each of the eight
vegetation classes according to the MCD12C1 product. This
comparison indicates that the distributions of GLASS LAI
values derived from AVHRR and MODIS reflectance data are
consistent with one another for each biome, particularly for the
grass/cereal crop, shrub, and deciduous broadleaf forest biome
types. At larger LAI values, the frequencies of GLASS LAI
values derived from AVHRR reflectance data showed slightly
higher values in the broadleaf crop, savannah, and evergreen
needleleaf forest biome types. GLASS LAI values derived from
AVHRR reflectance data were slightly underestimated relative
to GLASS LAI values derived from MODIS reflectance data
for evergreen broadleaf forest. For deciduous needleleaf forest,
the frequencies of GLASS LAI values derived from MODIS
reflectance data were slightly larger when the LAI values were
less than 0.5 and slightly smaller when the GLASS LAI values
were between 0.5 and 2.5, compared with the frequencies of
GLASS LAI values derived from AVHRR reflectance data.

Table II shows the mean values and standard deviations of
the LAI differences for different biomes and for the 12 months

from Julian day 185 in 2003 to Julian day 177 in 2004. The
mean values of the LAI differences were less than 0.3 for each
biome for all 12 months. The LAI values derived from AVHRR
reflectance data were larger than those derived from MODIS re-
flectance data by almost 0.2 LAI units for the grass/cereal crops,
shrubs, broadleaf crops, and savannah biome types, whereas the
LAI values derived from AVHRR reflectance data were lower
than those derived from MODIS reflectance data by almost
0.3 LAI units for evergreen broadleaf forest. The last row in
Table II shows the mean values and standard deviations of LAI
differences between the annual maximum LAI values derived
from AVHRR reflectance data and those derived from MODIS
reflectance data from Julian day 185 in 2003 to Julian day 177
in 2004 across different biomes, which reflect the worst possible
case. It can be observed that the mean values of LAI differences
calculated from annual maximum LAI values are less than 0.3
and the standard deviations are less than 1.0 for most vegetation
classes. Evergreen broadleaf forest has the largest mean value
and standard deviation. In this vegetation type, the LAI values
derived from MODIS reflectance data were larger than those
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TABLE II
ANALYSIS OF LAI DIFFERENCES BETWEEN LAI VALUES DERIVED FROM AVHRR REFLECTANCE DATA AND THOSE DERIVED FROM MODIS

REFLECTANCE DATA ACROSS DIFFERENT BIOMES FOR 12 MONTHS AND FOR ANNUAL MAXIMUM LAI DIFFERENCES FROM

JULIAN DAY 185 IN 2003 TO JULIAN DAY 177 IN 2004

Fig. 6. Box plots of annual anomalies of the GLASS LAI product during 1982–2012 for different vegetation classes. Each box stretches from the 25th percentile
to the 75th percentile. Outliers located more than one and one-half times the length of the box from either end of the box are not displayed.

derived from AVHRR reflectance data by almost 0.43 LAI
units. The lower LAI values derived from AVHRR reflectance
data corresponded to poor-quality AVHRR reflectance data
caused by persistent cloud contamination [25]. Overall, the
difference values indicate spatiotemporal agreement between
LAI values derived from AVHRR reflectance data and those
derived from MODIS reflectance data.

Fig. 6 shows box plots of the annual anomalies for vari-
ous vegetation classes according to the MCD12C1 product.
Generally, the median values of the LAI annual anomalies
are close to zero and show a continuous increasing trend for
all biomes except for evergreen broadleaf forest. For ever-
green broadleaf forest, the annual anomalies of GLASS LAI
values derived from MODIS reflectance data were relatively
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Fig. 7. Temporal profiles of GLASS LAI over five sites with different vegetation types from 1982 to 2012.

smooth. In contrast, small fluctuations were observed in the
annual anomalies of GLASS LAI values derived from AVHRR
reflectance data. This occurred because the quality of the
MODIS surface-reflectance data was significantly better than
that of the AVHRR surface-reflectance data over tropical forest
regions [25]. Furthermore, several months of AVHRR data were
missing in 1994 because of the late overpass of NOAA-14. In
summary, the GLASS LAI product derived from MODIS and
AVHRR reflectance data had very good consistency for time-
series trend analysis.

Fig. 7 shows the time series from the GLASS LAI product
for the Agro, Konza, Counami, NOBS-BOREAS NSA, and
Larose sites during 1982–2012. Detailed information about
these sites is given in Table I of the supplemental material. The
plots indicate that the GLASS LAI derived from AVHRR and
MODIS reflectance data had good temporal consistency and
that the GLASS LAI product was able to capture the seasonal
change properties of vegetation.

B. Cross-Comparison of GLASS LAI and
Other Global LAI Products

1) Spatial Consistency: Spatial distribution maps of global
mean LAI for the GLASS, MOD15, and GEOV1 LAI products
in January and July during 2001–2010 are shown in Fig. 8. Ar-
eas masked in gray (see Fig. 8) correspond to pixels where these

LAI products did not provide a valid LAI value. The MOD15
and GEOV1 LAI products contain many missing pixels in
rainforest regions and in middle- and high-latitude zones of the
Northern Hemisphere, particularly in January. Camacho et al.
[12] reported that the percentage of missing values at high
latitudes in the Northern Hemisphere varied as a function of
the period of the year (it reached a maximum in winter), mainly
due to snow coverage changes throughout the year as well as
an increase in observations under dark conditions, particularly
above the Arctic Circle in winter. As a consequence of more
prevalent cloudiness, the GEOV1 and MOD15 LAI products
also presented a large fraction of gaps (up to 50% and 60%,
respectively) over the Equatorial region [12]. However, no
missing values existed in the GLASS LAI product. This can
be attributed to the GLASS LAI retrieval algorithm, which
uses surface reflectance for a one-year period as its input to
estimate a one-year LAI profile for each pixel and a series of
preprocessing tasks to produce improved algorithm inputs.

It is apparent that the GLASS, MOD15, and GEOV1 LAI
products are generally consistent in their spatial patterns (see
Fig. 8). The Northern and Southern Hemispheres clearly
showed opposite seasonality. These LAI products presented
their highest values over Equatorial forest. LAI values were
intermediate at middle- and high-latitude zones, and all prod-
ucts showed small LAI peaks and high variability around
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Fig. 8. Global mean LAI for GLASS, MOD15, and GEOV1 products in (left) January and (right) July over 2001–2010. Geographic latitude/longitude projection,
0.05◦ resolution for display purposes. (a) GLASS, January. (b) GLASS, July. (c) MOD15, January. (d) MOD15, July.

50◦ N–60◦ N in July. LAI values were very low over sparsely
vegetated areas. However, discrepancies existed in the mag-
nitudes of these LAI products. At middle and high latitudes
of the Northern Hemisphere, these LAI products were more
consistent in January than in July. The GLASS and GEOV1
LAI values were between 0.5 and 1.0 LAI units higher than
the MOD15 LAI values around 50◦ N–60◦ N in July. In
the Southern Hemisphere, these LAI products were in good
agreement, particularly in July. A relatively large discrepancy
among these LAI products was observed in tropical forest
regions. The MOD15 LAI values over these regions could reach
6.8 LAI units and were larger than the corresponding GLASS
LAI values, which was partly due to overestimation of the
MOD15 LAI values associated with broadleaf forests [13]. The
GEOV1 LAI values were lower than the GLASS and MOD15
LAI values in these regions, particularly in January. The largest
difference between the GEOV1 and GLASS LAI values in these
regions was as much as 1.5 LAI units.

Histograms of the GLASS, MOD15, and GEOV1 LAI prod-
ucts from 2001 to 2010 for each biome type according to the
MCD12Q1 product are shown in Fig. 9. Among the biome
classes, the three LAI products for grasses/cereal crops and
shrubs demonstrated the most consistent distributions. Some

discrepancies among these LAI products were observed for
broadleaf crops, savannah, deciduous broadleaf forest, and
evergreen needleleaf forest. For very low LAI values, the
frequencies of the GEOV1 product showed the highest values;
as LAI values increased, the frequencies of the MOD15 LAI
product showed the highest values; for the highest LAI values,
the GLASS LAI product showed the highest frequencies.

Larger discrepancies were apparent for evergreen broadleaf
forests and deciduous needleleaf forests. For the evergreen
broadleaf forest biome type, the GLASS LAI values exhibited
a distribution with a narrow peak at approximately 5.0, and
the peak position of the MOD15 LAI frequency distribution
was approximately 5.7. The GEOV1 LAI values showed a
distribution closer to that of the GLASS LAI values, but the
frequencies of the GEOV1 LAI values showed a more even
distribution because the GEOV1 LAI product typically presents
lower values for this biome type [43].

2) Temporal Consistency: For each of the main biome
classes according to the MCD12Q1 product, three sites were
selected to illustrate the seasonality of the GLASS, MOD15,
and GEOV1 LAI products (see Fig. 10). Fig. 10(a) shows
temporal LAI trajectories over the Konza, Tundra, and Sud-
Ouest sites. The biome type for these sites is grasses and
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Fig. 9. Histograms of the GLASS, MOD15, and GEOV1 LAI products for 2001–2010 for different biome types.

cereal crops. Over the Konza site, the GLASS, MOD15, and
GEOV1 LAI products captured similar temporal trajectories.
The GLASS and GEOV1 products yielded smooth LAI profiles.
The MOD15 LAI values were between 0.5 and 0.8 higher than
those of GLASS and GEOV1 at the peak of each growing
season in 2000 and 2002. Over the Tundra site, the GLASS LAI
profile was complete, but most of the GEOV1 and MOD15 LAI
values were missing, particularly during nongrowing seasons.
The GEOV1 and MOD15 LAI profiles maintained lower LAI
values than the GLASS LAI profile. The GLASS LAI values
were slightly underestimated, with values lower by 0.2 LAI
units than the mean value of the high-resolution LAI map at
this site. Over the Sud-Ouest site, the GLASS LAI profile
was in good agreement with the GEOV1 LAI profile during
these years. The MOD15 LAI values were much lower than the
GLASS and GEOV1 LAI values, particularly during the grow-
ing seasons over this site. The agreement of the GLASS and
GEOV1 LAI values with the mean value of the high-resolution
LAI map was very good. Compared with this mean value, the

GEOV1 LAI values were slightly underestimated by 0.1 LAI
units, whereas the GLASS LAI values were overestimated by
less than 0.2 LAI units.

Fig. 10(b) shows temporal LAI trajectories over the Argo,
Barrax, and Demmin sites with the broadleaf crop biome
type. Over the Argo site, all LAI profiles exhibited consistent
seasonal variations. The GLASS, MOD15, and GEOV1 LAI
values demonstrated excellent agreement during nongrowing
seasons, but the GEOV1 LAI values were generally larger than
the GLASS and MOD15 LAI values during growing seasons.
Similar results were observed at the Barrax site, where the
GEOV1 LAI values were higher than the GLASS and MOD15
LAI values (by up to 0.5 LAI units) during growing seasons.
The GLASS and MOD15 LAI values were in good agreement
with the mean value of the high-resolution LAI map in 2004,
but the GLASS and MOD15 LAI values were slightly overesti-
mated (by 0.1–0.2 LAI units) compared with the mean value of
the high-resolution LAI map in 2005. Over the Demmin site,
good agreement was observed among the GLASS, MOD15,
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Fig. 10. Temporal profiles of GLASS, MOD15, and GEOV1 LAI values over a sample of sites with different biome classes. (a) Grasses and cereal crops.
(b) Broadleaf crops. (c) Broadleaf forests. (d) Needleleaf forests. (e) Shrub. (f) Savannah.

and GEOV1 LAI values for 2003. The GLASS and MOD15
LAI profiles exhibited consistent seasonal variations, but the
GEOV1 LAI profile showed a phase lag when compared with
the GLASS and MOD15 LAI profiles during the growing sea-
son in 2004–2005, when the GLASS and GEOV1 LAI values
were between 1.0 and 2.0 LAI units higher than the MOD15
LAI values.

Fig. 10(c) presents temporal LAI trajectories over broadleaf
forest sites. Over the Counami site, the biome type is evergreen
broadleaf forest. Most of the GEOV1 LAI values were missing.
The temporal profile of MOD15 LAI values at this site was

very noisy, which could be partly due to the high sensitivity
of MOD15 LAI values to surface-reflectance uncertainties for
large LAI values [44]. In contrast, the GLASS LAI product
captured a complete and reasonable temporal profile that was
relatively smooth and exhibited limited seasonality. Meanwhile,
the GLASS LAI values were generally in good agreement
with the mean values of high-resolution LAI maps. Over the
Puechabon site, the GLASS, MOD15, and GEOV1 LAI values
exhibited similar temporal trajectories, but large discrepancies
could be observed in LAI magnitudes among these LAI prod-
ucts for each year. The GLASS LAI values were generally
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Fig. 11. Temporal profiles of GLASS, MOD15, and GEOV1 LAI values over the (a) Agro and (b) Fermi sites with time series of LAI field measurements.

between the MOD15 and GEOV1 LAI values: The MOD15
LAI values, except for dramatic fluctuations, were between
1.0 and 2.0 LAI units larger than the GLASS LAI values during
growing seasons in these years, whereas the GEOV1 LAI values
were systematically lower than the GLASS LAI values (up
to 1.5 LAI units). The GLASS LAI values outperformed the
LAI values of other products in terms of accuracy compared
with the mean value of the high-resolution LAI map at this
site. The Camerons site is a dry evergreen broadleaf forest site.
Similarly to the Counami site, the GLASS LAI profile as well
as the GEOV1 and MOD15 LAI profiles at this site presented
almost no seasonality, as expected for these evergreen forests,
and which is consistent with the findings of Camacho et al. [20].

The temporal profiles of the GLASS, MOD15, and GEOV1
LAI values over the Larose, NOBS-BOREAS, and Sonian sites
with the needleleaf forest biome type are provided in Fig. 10(d).
Over the Larose site, the land cover is composed mainly of
boreal forest (conifers and deciduous trees) and wetland (grass
and shrubs). All the LAI products showed similar seasonal and
interannual variability, although with considerable differences
in magnitude. The GEOV1 LAI values were significantly lower
than the GLASS and MOD15 LAI values (by up to 2.0 LAI
units) during each growing season. The NOBS-BOREAS site
is predominantly forested with black spruce stands of variable
density, but contains numerous wetlands, small open-water
bodies, small aspen stands, and extensive moss cover [45].
The GEOV1 and MOD15 LAI values were missing for the
winters because of large uncertainties in the reflectance data.
The GLASS LAI values were slightly higher than those of
MOD15 and GEOV1 in 2000–2001 and were closer to the
mean values of the high-resolution LAI maps at this site. Over
the Sonian sites, all the products showed similar seasonal and
interannual variations and had almost the same magnitude,
although the MOD15 LAI profile showed dramatic fluctuations
during the growing seasons in 2003–2005.

As for the shrub biome type, the LAI temporal profiles over
the Donga, Okwa, and Turco sites are shown in Fig. 10(e).
Over the Donga site, the GLASS and GEOV1 LAI profiles

achieved good agreement with the envelope of the time-series
MOD15 LAI values, although many of the GEOV1 LAI values
were missing during the peak of each growing season. Over the
Okwa site, the GLASS and MOD15 LAI profiles had almost
the same magnitude, whereas the GEOV1 LAI profile presented
lower magnitude throughout these years. Over the Turco site,
the GLASS, MOD15, and GEOV1 LAI profiles all showed
good completeness. The LAI values for all three LAI products
were less than 0.5 during these years. Excellent agreement was
achieved between the GLASS and MODIS LAI profiles at this
site. The GEOV1 LAI values were systematically lower than
those of MOD15 and GLASS (up to 0.15 LAI units) throughout
these years.

Fig. 10(f) shows temporal LAI trajectories over the
Pandamatenga and Larzac sites, which are of the savannah
biome type. Over the Pandamatenga site, the GLASS, MOD15,
and GEOV1 LAI profiles showed similar temporal trajectories,
but the GEOV1 LAI values were lower than the GLASS and
MOD15 LAI values during the nongrowing season of each
year. Over the Larzac site, all these LAI products were in
good agreement, and the LAI values of these products were all
overestimated by 0.8–1.2 LAI units compared with the mean
value of the high-resolution LAI map.

Fig. 11 shows the temporal profiles of GLASS, MOD15, and
GEOV1 LAI values over the Agro and Fermi sites to evaluate
the seasonal changes of these LAI products. For comparison,
the time series of LAI field measurements is also displayed
in Fig. 11. The GLASS, MOD15, and GEOV1 LAI profiles
showed similar seasonal and interannual variability, although
there were some discrepancies in LAI magnitude, particularly
at the peak of each growing seasons. At the Agro site, the
seasonal change patterns exhibited by the GLASS, MOD15,
and GEOV1 LAI values were in good agreement with that of
the time series of LAI field measurements [see Fig. 11(a)]. All
the satellite-based LAI values consistently underestimated the
field measurements at the peak of the growing season in 2002,
which may be partly explained by errors as well as the scale
mismatch of the field measurements. At the Fermi site, the
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Fig. 12. Maps of mean δLAI for GLASS, MOD15, and GEOV1 LAI products over 2001–2010. Geographic latitude/longitude projection, 0.05◦ resolution for
display purposes. (a) GLASS. (b) MOD15. (c) GEOV1.

growing seasons according to GLASS, MODIS, and GEOV1
LAI values were significantly advanced compared with the sea-
sonality exhibited by the time series of LAI field measurements
[see Fig. 11(b)], which resulted in the GLASS, MODIS, and
GEOV1 LAI values being higher than the field-measured LAI
values before the peak of each growing season.

Fig. 12 shows mean δLAI maps for the GLASS, MOD15,
and GEOV1 LAI products from 2001 to 2010. Obviously, the
GLASS product has the smallest δLAI values (< 0.1) for differ-
ent vegetation types around the world, which demonstrates that
the GLASS LAI product has the smoothest temporal profiles
because the GLASS LAI algorithm estimates one-year LAI
profiles from the preprocessed reflectance data for a one-year
period: The possible noise is smoothed out. The δLAI values
for the MOD15 LAI products are clearly higher than those for
the GLASS and GEOV1 LAI products, particularly in rainforest
regions along the Equator, with δLAI values greater than 1.0.
These quantitative results confirm the qualitative observations
of the temporal profiles over the selected sites shown in Fig. 10.

C. Direct Validation

The scatterplots in Fig. 13 show the GLASS, GEOV1, and
MOD15 LAI values versus the mean values of the high-
resolution LAI maps over the validation sites shown in Table I
of the supplemental material. The relationships between the
GLASS, GEOV1, and MOD15 LAI values and the mean values
of the high-resolution LAI maps had slopes of 0.7418, 0.6582,
and 0.5969, respectively, and positive intercepts (0.2753, 0.2511,
and 0.2494), which means that the GLASS, GEOV1, and
MOD15 LAI values overestimated the mean values of the high-
resolution LAI maps when LAI values were low and under-
estimated them when LAI values were high. Compared with
the MOD15 LAI values, the GLASS and GEOV1 LAI values
are distributed more closely around the 1:1 line with the mean
values of the high-resolution LAI maps, which demonstrates

that the GLASS and GEOV1 LAI products achieved better
agreement across the whole range of LAI values than the
MOD15 LAI product. However, the GLASS LAI values were
in slightly better agreement with the mean values of the high-
resolution LAI maps than the GEOV1 LAI values, particularly
for the highest LAI values, although a slight underestimation of
the highest values over forest can be observed for the GLASS
LAI product.

A comparison of these scatterplots with the high-resolution
LAI maps indicates that the performance of the GLASS LAI
product (RMSE = 0.7848, μ = −0.2172, and σ = 0.7761)
was better than those of the GEOV1 LAI product (RMSE =
0.9084, μ = −0.4008, and σ = 0.8152) and the MOD15 LAI
product (RMSE=1.1173,μ = −0.5193, and σ = 0.9963). The
GLASS LAI values also provided the highest R-squared value
(R2 = 0.8095) against the mean values of the high-resolution
LAI maps compared with the GEOV1 (R2 = 0.7939) and
MOD15 (R2 = 0.6705) LAI values.

V. DISCUSSIONS

The GLASS LAI retrieval algorithm uses GRNNs to re-
trieve LAI values from time-series MODIS/AVHRR reflectance
data. Training with representative samples is of critical im-
portance in any neural-network-based retrieval algorithm. In-
stead of simulated data, the GRNNs were trained using fused
time-series LAI values from MOD15 and CYCLOPES LAI
products and preprocessed MODIS/AVHRR reflectance data
over the BELMANIP sites. Several global LAI products were
retrieved from satellite observations based on existing LAI
products. The GEOV1 LAI retrieval algorithm relies on back-
propagation neural networks trained with the “best estimates”
of LAI obtained by fusing and scaling the MOD15 and
CYCLOPES LAI products and the SPOT/VEGETATION nadir
surface reflectance values over the BELMANIP sites [24]. The
GIMMS3g LAI retrieval algorithm relies on feedforward neural
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Fig. 13. Scatterplots of (a) GLASS, (b) GEOV1, and (c) MOD15 LAI values versus mean values of high-resolution LAI maps for direct validation. The regression
function, R2, RMSE, μ, and σ are also shown.

networks trained with the best-quality MOD15 LAI product and
GIMMS3g NDVI data [23].

A unique feature of the GLASS LAI retrieval algorithm
is that the LAI annual profile is estimated using annual ob-
servations. Unlike existing neural network methods that use
remote sensing data acquired only at a specific time to retrieve
LAI, the GRNNs used in GLASS LAI production use the
surface reflectance for a one-year period as their input, and their
output is the one-year LAI profile for each pixel. Therefore,
the retrieval algorithm can remove abrupt spikes and dips and
generate temporally continuous and smooth LAI profiles. The
long time series of the GLASS LAI product is very suitable for
long-term research in fields such as agricultural sustainability,
forest ecosystems, and global changes.

Nevertheless, the surface-reflectance data for a one-year
period were entered into the GRNNs to estimate the one-year
LAI profiles. Therefore, the GLASS LAI retrieval algorithm
is essentially a reanalysis method. It is impossible to provide
near-real-time retrievals from satellite observations. This is one
of the weaknesses of the GLASS LAI retrieval algorithm com-
pared with the MOD15 and GEOV1 LAI retrieval algorithms,
which can generate LAI products from remotely sensed data
in near real time for hazard/disaster monitoring and warning.

In addition, the GLASS LAI retrieval algorithm can also re-
move abrupt spikes and dips, which may lead to the loss of
neighboring smaller peaks in LAI profiles. For example, in
Fig. 10(a), the GLASS LAI profile over the Sud-Ouest site does
not reproduce the expected double peak during the growing
seasons in 2002 and 2003.

VI. CONCLUSION

A method previously proposed has been improved to gen-
erate the GLASS LAI product for 1981–2014 from MODIS
and AVHRR reflectance time-series data. The consistency of
GLASS LAI values derived from AVHRR and MODIS re-
flectance data was evaluated, and the quality and accuracy of
the GLASS LAI product were assessed in this study through
comparisons with MOD15 and GEOV1 LAI products and direct
comparisons with high-resolution LAI maps.

The results have demonstrated that the GLASS LAI values
derived from MODIS and AVHRR reflectance data form a
consistent data set at a spatial resolution of 0.05◦. Comparisons
of the GLASS LAI product with the MOD15 and GEOV1
LAI products indicated that these LAI products are generally
consistent in their spatial patterns. The global consistency of
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these LAI products is good in most situations, particularly for
grasses/cereal crops and shrubs. However, a relatively large
discrepancy among these LAI products was observed in trop-
ical forest regions, where GEOV1 LAI values were clearly
lower than the GLASS and MOD15 LAI values, particularly in
January. Temporal consistency analysis showed that the tem-
poral profiles of all these LAI products exhibited consistent
seasonal variations. The GLASS and GEOV1 LAI products
provided smooth trajectories, whereas the MOD15 LAI product
showed less stable profiles, particularly during growing seasons.
Quantitative comparison of these temporal profiles demon-
strated that the temporal smoothness of the GLASS LAI product
was superior to that of the GEOV1 and MODIS LAI products.

Direct validation with mean values of high-resolution LAI
maps showed that the GLASS LAI values were closer to the
mean values of these maps than the GEOV1 and MODIS LAI
values. All these LAI products showed better performance for
low LAI values than for high LAI values, but the GLASS LAI
values were in better agreement with the mean values of the
high-resolution LAI maps than the GEOV1 and MOD15 LAI
values, particularly for higher LAI values.

The validation of LAI products, however, is limited by
LAI ground measurements, most of which have been available
since 2000. In the near future, the authors hope to carry out
more extensive validation and analysis of the GLASS LAI
values derived from AVHRR reflectance data by searching for
ground measurements for direct validation and by integrating
key climate variables such as temperature and precipitation for
indirect validation.
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