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Abstract. Land surface temperature (LST) is a crucial parameter for hydrology, climate monitoring, and 7 

ecological and environmental research. LST products from thermal infrared (TIR) satellite data have been widely 8 

used for that. However, TIR information cannot provide LST data under cloudy-sky conditions. All-sky LST can 9 

be estimated from microwave measurements, but their coarse spatial resolution, narrow swaths, and short temporal 10 

range make it impossible to generate a long-term, high-resolution, accurate global all-sky LST global. This study 11 

proposes a methodology for generating the all-sky LST product by combining multiple data from Moderate 12 

Resolution Imaging Spectroradiometer (MODIS), reanalysis, and ground in situ measurements using a random 13 

forest. Field measurements from the AmeriFlux and Surface Radiation Budget (SURFRAD) networks were used 14 

for model training and validation. Cloudy-sky and clear-sky LST models were developed separately. To further 15 

improve the accuracy of the cloudy-sky LST model, the conventional RF model was extended to incorporate 16 

temporal information. The models were validated using in situ LST measurements from 2010, 2011, and 2017 17 

that were not used for the model training. For the cloudy-sky and clear-sky models, root-mean-square-error 18 

(RMSE) = 2.767 and 2.756 K, R² = 0.943 and 0.963, and bias = −0.143 and −0.138 K, respectively. The same 19 

validation samples were used to validate both the MODIS LST product under clear-sky conditions and all-sky 20 

Global Land Data Assimilation System (GLDAS) LST product at 0.25° spatial resolution, with RMSE = 3.033 21 
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and 4.157 K, bias = −0.362 and −0.224 K, and R² = 0.904 and 0.955, respectively. Additionally, the 10-folds 22 

cross-validation results using all the training datasets further indicate the model stability. The models were 23 

applied to generate the all-sky LST product from 2000-2015 over the conterminous United States (CONUS). Our 24 

product shows similar spatial patterns to the MODIS and GLDAS LST products, but it is more accurate. Both 25 

validation and product comparisons demonstrated the robustness of our proposed models in generating the 26 

all-sky LST product. 27 
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1 Introduction 30 

Land surface temperature (LST) is the skin temperature of the uppermost layer of the earth’s surface. It is a 31 

key parameter in land surface energy exchange and interactions between land and atmosphere. Therefore, it is a 32 

crucial study factor in many scientific fields such as climate change, energy balance, hydrology, agriculture, and 33 

ecology. Remote sensing data are used to obtain LST with high spatial and temporal resolution from regional to 34 

global scale (Li et al. 2013; Liang 2005). In the past few decades, many LST products and algorithms based on 35 

infrared satellite data have been developed, such as from the Moderate Resolution Imaging Spectroradiometer 36 

(MODIS) (Ma et al. 2017; Wan and Dozier 1996) and Visible Infrared Imaging Radiometer (VIIRS) (Ma et al. 37 

2018; Yu et al. 2005). However, due to the influence of clouds, LST values are valid only under clear-sky 38 

conditions. Research has shown that the data loss caused by cloud contamination exceeds 50 %, and it is 39 

especially severe during the daytime (Crosson et al. 2012; Duan et al. 2017). Therefore, an appropriate method 40 

for LST estimation under all-sky conditions should be developed. 41 

Several approaches have been proposed to address the missing values in LST products resulting from cloud 42 

contamination (Liang and Wang 2019; Shen et al. 2015; Zhan et al. 2013). The algorithms used for this purpose 43 

can be divided into four classes: 1) temporal and spatial, 2) physically based, 3) passive microwave-data based, 44 
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and 4) machine learning. Among them, temporal and spatial methods use spatiotemporal information of LST, 45 

considering its temporal variation law and spatial distribution characteristics. Spatial information-based methods 46 

establish the relationship between cloudy pixels and the nearest clear sky pixels mainly through interpolation , 47 

such as kriging, spline function and inverse distance weighting (Jackson et al. 2014; Neteler 2010; Urquhart et 48 

al. 2013). However, the accuracy of these methods depends on the availability of nearby clear-sky pixels, which 49 

are limited in large areas of cloudy sky pixels, leading to an unsatisfactory accuracy. Temporal 50 

information-based methods including interpolation or filtering, are to obtain the missing value from the time 51 

series of clear-sky LST(Pede and Mountrakis 2018; Zeng et al. 2015). Moreover, MODIS LST has four 52 

observations from Terra and Aqua satellites, which provides the possibility to fill a gap using other clear-sky 53 

observations (Coops et al. 2007; Li et al. 2018). Some researchers combine spatial and temporal methods to 54 

gather more information for LST reconstruction (Metz et al. 2017; Zhang et al. 2018). Although the spatial and 55 

temporal methods use the variation of LST in time and space, they are based on clear sky pixels, which results in 56 

a hypothetic clear-sky LST rather than the actual cloudy-sky LST (Zeng et al. 2018). 57 

To estimate the real LST under cloudy-sky conditions, some methods combine physical processes data (Jin 58 

and Dickinson 2000; Yu et al. 2014; Zeng et al. 2018; Zhang et al. 2015). A physical algorithm based on surface  59 

energy balance (SEB) was proposed by Jin and Dickinson (2000).The proposed method considered that the LST 60 

under cloudy sky was affected by changing the solar radiation and downward longwave radiation. Thus, LST for 61 

a cloudy pixel can be derived from a neighboring clear-pixel LST and the SEB difference between the two 62 

pixels. Then the method is improved by using both temporal and spatial information from neighboring 63 

clear-pixels to estimate the cloudy LST for MODIS product (Yu et al. 2014). However, some physical 64 

parameters required in these methods, such as wind speed and air temperature, were difficult to obtain. Then, 65 

with the emergence of advanced remote sensing products, a two-step method was proposed by using 66 

multi-temporal LST and combined corresponding vegetation index to obtain a hypothetical LST and then correct 67 
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the hypothetical LST based on SEB using solar shortwave irradiation data (Zeng et al. 2018). In addition, a 68 

scheme accounting for the solar‐cloud‐satellite geometry effect to estimate the LSTs of shadowed and 69 

illuminated pixels covered by clouds in the image has also been proposed (Wang et al. 2019). Moreover, a more 70 

generalized method that assimilates clear-sky LST into a surface energy balance equation has been recently 71 

proposed to estimate cloud-sky LST from MODIS and VIIRS data (Jia et al. 2021). 72 

Passive microwave (PMW) remote sensing data provide another approach to estimate all-sky LST retrievals 73 

(Duan et al. 2017; Han et al. 2018; Zhou et al. 2015) , and they are less affected by cloud contamination. 74 

However, there are also limitations in the LST retrieval from PMW measurements. For instance, PMW remote 75 

sensing data have a coarse spatial resolution of tens of kilometers, such as the Advance Microwave Scanning 76 

Radiometer-Earth Observing System (AMSR-E) with a 25 km resolution (Cavalieri 2014). Moreover, PMW data 77 

have orbit gaps to consider. In addition, the temperature obtained from PMW measurements is the subsurface 78 

temperature, in contrast with thermal infrared (TIR) LST that provides skin temperature (De Jeu 2003; Prigent et 79 

al. 1999) . The accuracy of the LST retrieval from passive microwave measurements is lower than that from TIR 80 

measurements by 3–5 K (Duan et al. 2017). Recently, some researchers have explored the possibility of 81 

combining PMW data and reanalysis data to estimate all-sky LST (Zhang et al. 2019c; Zhang et al. 2020). In 82 

contrast to PMW data, reanalyzed data is obtained by advanced land surface modeling and data assimilation 83 

techniques from satellite- and in situ observations. Reanalysis data involves the continuous monitoring without 84 

any gaps and can provide another possibility for all-sky LST retrieval (Long et al. 2020; Padhee and Dutta 2020; 85 

Zhang et al. 2019c; Zhang et al. 2021).  86 

Many LST estimation methods based on machine learning and deep learning have emerged (Wu et al. 2019; 87 

Zhang et al. 2020; Zhao and Duan 2020). Most of them construct a relationship between clear-sky MODIS LST 88 

and related variables and extend that relationship to all-sky conditions. However, the relationship constructed 89 

with clear-sky pixels may not apply to cloudy-sky conditions. Therefore, models that provide real cloudy-sky 90 
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conditions LST using in situ LST measurements are relatively reliable. One type of in situ LST is the actual LST 91 

measured on the ground (Coll et al. 2005; Wan et al. 2002) , which is difficult to obtain in a large area and 92 

limited to homogeneous and flat surfaces. Based on thermal radiative transfer theory, LST can also be calculated 93 

from the ground upwelling longwave radiation as well as emissivity and downwelling longwave radiation (Wang 94 

et al. 2008). Various longwave radiation measurement sites are available in the conterminous United States 95 

(CONUS), which produces sufficient representative in situ LST measurements for the training of machine 96 

learning models to produce all-sky LST estimates on a national scale.  97 

This study aims to estimate all-sky LST over CONUS from both MODIS/Terra (MOD) and MODIS/Aqua 98 

(MYD) instantaneous clear-sky LST products and other imformation. We choose the random forest (RF) 99 

algorithm to build a non-linear relationship between LST and related variables, and we developed a temporal RF 100 

(T-RF) algorithm for a cloudy model, which considers the temporal variation information of LST. To accurately 101 

estimate cloudy-sky LST, we incorporated several all-sky surface radiation variables and reanalysis data. The 102 

surface radiation variables help capture the physical process of surface heat exchange. To enhance the model 103 

performance, we constructed separate models for clear-sky conditions and cloudy-sky conditions and compared 104 

the models based on two algorithms for cloudy conditions.  105 

The remainder of this paper is organized as follows. Section 2 introduces the data sources. Section 3 106 

describes the algorithms and the process chain in detail. Section 4 presents the results and discussion of model 107 

performance and compares it with other products. Section 5 presents the data availability. Section 6 discusses the 108 

advantages and limitations of this study, and Sect. 7 presents the conclusions. 109 

2 Data 110 

The data used in this study include 1) in situ LST measurements for model training and validation, 2) 111 

reanalysis dataset used for the model as well as comparison, and 3) remotely sensed data as model inputs (i.e., 112 

surface variables, radiation variables, and geolocation information). Table 1 summarizes the products used in this 113 
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study. Each type of data (i.e., in situ measurements, remotely sensed data, and Global Land Data Assimilation 114 

System (GLDAS) data), as well as the pre-processing steps, are described in detail in the following sections. 115 

2.1 In situ measurements 116 

To obtain the in situ LST for model training and validation, in situ longwave radiation measurements were 117 

collected at two observation networks, namely AmeriFlux and Surface Radiation Budget (SURFRAD). The 118 

AmeriFlux network, supported and maintained by the Lawrence Berkeley National Laboratory, was established 119 

to connect research on field sites representing major climate and ecological biomes, and it has 110 current active 120 

sites (Baldocchi et al. 2001). Some sites from the AmeriFlux network have longwave radiation records. 121 

SURFRAD networks support climate research with accurate, continuous, long-term measurements of the surface 122 

radiation budget over the United States (Augustine et al. 2000; Augustine et al. 2005). Currently, seven 123 

SURFRAD stations are operating in climatologically diverse regions. To reduce the uncertainties, strict quality 124 

control should be conducted on all the sites. First of all, we checked the temporal continuity and removed the 125 

individual sites with few and continuity records. Then, one set of site data was kept from the available nearby 126 

sites to avoid the duplication and interference. Finally, we selected all sites with longwave radiation 127 

measurements on CONUS from 2003 to 2017, thus including 89 sites from AmeriFlux and 7 from SURFRAD. 128 

In order to verify the representativeness of the sites, we extracted the 30 m LST data of Landsat8 from 129 

2016-2018 on the Google earth engine (Ermida et al. 2020). The extracted pixels were within 1 km around the 130 

sites, and the standard deviation (std) value in the extracted window was calculated to represent the 131 

heterogeneity. The histogram statistic of multi-year average std for each site is shown in Fig.1 (b). The result 132 

shows that selected sites are highly representative, and the std of all sites is less than 3 K. Since the observation 133 

time of Landsat is during the daytime in the morning, the heterogeneity at nighttime is lower (Duan et al. 2019; 134 

Wang and Liang 2009). However, the Aqua overpasses in afternoon, which probably increases the heterogeneity 135 
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(Li et al. 2014). Fig.1(a) shows the spatial distribution and std of the 96 in situ observation sites used in this 136 

study. 137 

The ground-based LST at the in situ observation sites was retrieved from the surface upwelling and 138 

atmospheric downwelling longwave radiation using the Stefan–Boltzmann law: 139 

                     �� � �
�����	
���
�

��
�

�

�  ,                                   (1) 140 

where Ts is the LST, Fup is the longwave upwelling radiation, Fdn is the longwave downward fluxes, σ is the 141 

land surface of broad-band emissivity, and ε is the Stefan–Boltzmann’s constant (5.67×10−8 Wm−2 K−4). The 142 

surface broadband emissivity of the flux towers was obtained from the broad band emissivity (BBE) product 143 

referred to in Sect. 2.2. 144 

 145 

Fig. 1. (a) Spatial distribution of selected sites in the study area. SURFRAD network is shown with circles while AmeriFlux network is 146 

shown with triangles. The std value of each site is represented by different colors. Land use cover types for 2011 (background colored 147 

shading) are from a MODIS land use cover product at a 500 m spatial resolution. (b) The histogram of multi-year average values of standard 148 

deviation for each site is shown. 149 

2.2 Remotely sensed data 150 

The remotely sensed data used in this study are summarized in Table 1. The MODIS LST products (i.e., 151 

MOD11L2 and MYD11L2) in Collection 6, are at a 1 km spatial resolution. They can provide instant LSTs in 152 

daytime and nighttime from different satellite viewing times, retrieved by the generalized split-window (GSW) 153 

method (Wan and Li 1997). Pixels with quality control (QC) flags of clouds were identified as cloudy pixels, and 154 
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clear-sky LST was used to compare them with the clear-sky LST estimates. The MOD03 and MYD03 products 155 

with l km resolution represent the geolocation products, and they provide the solar zenith angle (SZA), solar 156 

azimuth angle (SAA), viewing zenith angle (VZA), viewing azimuth angle (VAA), and surface elevation 157 

variables. The relative azimuth angle was calculated from SAA and VAA. The geolocation products were also 158 

utilized to match pairs between in situ longwave radiation measurements and satellite LST. Furthermore, the 159 

MODIS land cover product (MCD12Q1) provides land cover types once a year with a 500 m resolution. The 160 

daily MODIS snow cover data (MOD10A1 and MYD11A1) in Collection 5 was utilized to identify snowy 161 

conditions at a 500 m resolution. They were not upscaled to 1 km to better represent the surface condition of the 162 

site. 163 

Five products from the Global LAnd Surface Satellite (GLASS) suite were used (Liang et al. 2020), 164 

including BBE, surface longwave net radiation (LWNR), downward shortwave radiation (DSR), surface 165 

broadband albedo (albedo), and leaf area index (LAI). The BBE product (GLASS03A01) was derived from 166 

Advanced Very High Resolution Radiometer (AVHRR) and MODIS optical data using newly developed 167 

algorithms (Cheng et al. 2016; Cheng et al. 2014). BBE was used to calculate the in situ LST. For the GLASS 168 

LWNR (GLASS06M01), a new parameterized scheme was proposed to calculate instant downward longwave 169 

radiation (LWDN) based on MODIS data (Cheng et al. 2017; Yang and Cheng 2020). As for the LWDN under 170 

cloudy condition, Yang and Cheng (2020) discussed the algorithm for estimating LWDN from the derived active 171 

and passive cloud property parameters, such as cloud thickness, cloud-base temperature. For that, the LWDN 172 

variable in the LWNR product was used. The DSR product (GLASS05B01) provided daily DSR values 173 

produced using MODIS data based on a look-up table from radiative transfer models established with and 174 

without clouds (Zhang et al. 2019b). The GLASS albedo was produced using MODIS and AVHRR data from a 175 

direct-estimation algorithm (Liu et al. 2013; Qu et al. 2014). The GLASS LAI product was produced using the 176 
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MOD09A1 product by the general regression neural network method (Xiao et al. 2014; Xiao et al. 2016). The 177 

GLASS products mentioned above have the same spatial resolution of 1 km, except for DSR with 0.05°. 178 

The temporal resolution of these products is eight days (use 8 d to represent the eight days in the following), 179 

except for DSR (daily) and the LWDN (instant). All of them are global land surface products for all-sky 180 

conditions. To obtain daily values of each 8 d variable (i.e., BBE, Albedo, LAI), interpolation methods were 181 

utilized for each product. As for BBE and Albedo, the nearest neighbour interpolation method was used, as these 182 

two variables are nearly invariant within eight days. However, there may be snowy days leading to a mutation. 183 

Therefore, we identified the BBE value of snowy days as 0.985 according to the snow cover product. If it is not 184 

snowy, but the BBE value is 0.985, it will be replaced by the nearest value. The BBE data with good quality 185 

(QC=0) was used. As for LAI, the linear interpolation method was used to obtain daily LAI, which would 186 

represent the trend of LAI. 187 

The rationale for choosing the variables in these products are given in Sect. 3. 188 

Table 1. Summary of remotely sensed data used in this study. 189 

Variables Product 

Resolution 

(spatial/temp

oral) 

Land surface temperature (LST) MOD11L2, MYD11L2 1 km/instant 

View angle, solar angle, and height MOD03, MYD03 1 km/instant 

Snow cover MOD10A1, MYD11A1 500 m/daily 

Land cover (LAC) MCD12Q1 500 m 

Broadband Emissivity (BBE) GLASS03A01 1 km/8 d 

Downward longwave radiation (LWDN) GLASS06M01 1 km/instant 

Downward Shortwave Radiation (DSR) GLASS05B01 0.05°/daily 

Surface Broadband Albedo (Albedo) GLASS02A06 1 km/8 d 

Leaf area index (LAI)  GLASS01A01 1 km/8 d 

2.3 GLDAS LST data 190 

The GLDAS data represent global reanalysis data containing a series of land surface states and flux. It 191 

incorporates both ground- and space-based observation systems to constrain the modeled land surface states and 192 

flux (Rodell et al. 2004). There are four different models, namely MOSAIC, NOAH, CLM, and VIC, to simulate 193 
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the hydrological fields of GLDAS for different products. In this study, the instantaneous LST was used in the 194 

GLDAS NOAH dataset with 0.25° spatial resolution at a 3-h time scale. GLDAS LST was temporally 195 

interpolated to the value at the MODIS observation time via a cubic spline interpolation and resampled to 1 km 196 

using the nearest neighbour method. 197 

3. Methods 198 

The overall framework of the process developed in this study is shown in Fig. 2. First, parts of the samples 199 

were compiled for model training and validation, and the remaining samples were used as an independent dataset 200 

for the model evaluation. Subsequently, the mean decrease impurity (MDI) method was used to remove the 201 

redundant variables. After the variables were determined, grid research was combined with random search to 202 

determine the parameters of the final model. The RF and T-RF are described in Sect. 3.2. 203 

GLDAS LST LWDN DSR

LAI Albedo SZA

VZA RAA Height

Input variables

In situ

LST

BBE
In situ

radiation

Preprocess (interpolation, resample) 

and matchup

Cloudy-sky  Model

RF  / T-RF 

Clear-sky  Model

RF 

Model validation and 

comparison

Estimated all-sky LST

QC = 0
Quality 

control

 204 

 205 

 Fig. 2. Flowchart of the process to estimate all-sky LST from MODIS data. 206 
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3.1. Temporal RF model 207 

RF is a machine learning method proposed by Breiman (2001) and has been widely used for regression and 208 

classification (Belgiu and Drăguţ 2016; Gibson et al. 2020; Kuter 2021; Pelletier et al. 2016). In regression tasks, 209 

the RF method is outstanding in constructing complex nonlinear relationships between predictor and response 210 

variables for a large dataset (Hutengs and Vohland 2016). The RF method has the characteristics of randomness 211 

in the selection of samples and attributes. This counterintuitive strategy leads to better performance compared to 212 

several other machine learning methods and is robust against overfitting (Liaw and Wiener 2002). 213 

RF is an ensemble algorithm that consists of multiple decision trees (Breiman 2001). In a random forest, 214 

each decision tree grows on a bootstrap sample of the training data. A decision tree is a tree-like model with 215 

multiple nodes. The dataset is segmented at each node using a random subset of predictors through information 216 

gain, Gini index or other methods to construct the splitting rules. Besides, the number of predictors is limited for 217 

a split, which can reduce the computational complexity of the algorithm and the correlation among the trees. The 218 

split process of RF introduces randomness that contributes to a less variable and more reliable result (Hutengs 219 

and Vohland 2016). Generally, the spilt process is repeated recursively on each subset until the node contains 220 

similar samples, or the splitting no longer improve the predictions The final result is obtained from all decision 221 

trees by voting (in case of classification) or averaging (in case of regression) (Pelletier et al. 2016). In this study, 222 

model training and predictions were undertaken using the scikit-learn package in Python (Pedregosa et al. 2011). 223 

 RF method is widely used in remote sensing (Belgiu and Drăguţ 2016). However, it is common to input 224 

several independent variables and not consider temporal information. Recent studies have combined 225 

spatiotemporal information with RF in other fields (Wei et al. 2019; Wei et al. 2020). As LST varies 226 

considerably over time, many studies have utilized temporal information to reconstruct or estimate LST under 227 

cloudy conditions (Kilibarda et al. 2014). We combined the time-weighted LST information with the RF model, 228 

thus creating the T-RF model to estimate cloudy LST. Therefore, the T-RF model considers not only the 229 
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information of multiple variables but also the LST in the time dimension. The temporal characteristic Pt in each 230 

pixel can be expressed as 231 

�� �

∑
1

���
� ��

�
��	

∑
1

���
�

�
��	

  232 

                 (2) 233 

In the equation, ��� represents the temporal distance, and L represents the prior or later l days for the same 234 

pixel, ��  represents the LST on l day. Considering the variation of LST, the available observations at almost the 235 

same time within 8 days were used. 236 

3.2 Model training  237 

All clear-sky and cloudy-sky samples from 2003 to 2009 and 2012–2016 were compiled. Usually, in RF 238 

algorithm, approximately two-thirds of the samples are used for model training and the remaining are for model 239 

validation (Breiman 2001). The other samples from the other three years (2010, 2011, and 2017) were used as 240 

independent datasets for validation.  241 

We initially selected the following variables: DSR, LWDN, LAI, SZA, VZA, RAA, surface elevation 242 

(Height), GLDAS LST (GLST) and broadband albedo that contains black-sky albedo and white-sky albedo in 243 

the three bands of shortwave (B-SH, W-SH), visible (B-VIS, W-VIS), and near infrared (B-NIR, W-NIR). LST 244 

was determined by the difference between incident and outgoing energy in the process of surface energy 245 

exchange. According to Eq. (1), longwave radiation is essential in this process. Meanwhile, DSR can reflect the 246 

significant changes in solar radiation caused by clouds that influence LST to a certain extent. Thus, LWDN and 247 

DSR were used to reflect the contributions of long and shortwave radiation to LST. In addition, the LAI and 248 

broadband albedo were used to represent surface conditions such as vegetation coverage, soil moisture, and land 249 

cover type, which also influence LST. In addition, the prediction of LST at a finer resolution is influenced by 250 

geographical and topographical parameters including surface elevation, and the view and relative angle of the 251 
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satellite and the sun (Zhao et al. 2019). All abovementioned variables were at high resolution for all-sky 252 

conditions. Moreover, the reanalysis data were available in all-sky conditions but with coarse resolution. The 253 

LST of the GLDAS was also utilized as an input variable. 254 

To prevent the model from being too complex thus leading to overfitting, the model was further adjusted by 255 

selecting the most important variables and adjusting the parameters. The mean decrease in impurity (MDI) was 256 

widely used in tree models as a variable importance measure because of its high efficiency and stability (Han et 257 

al. 2016; Louppe et al. 2013). The MDI index shows the total decrease in node impurities from splitting on the 258 

variable, averaged over all trees; and it reflects the contribution of the parameters to the model. In this study, we 259 

used the MDI method to filter the variables. MDI was used separately for the clear and cloudy-sky condition 260 

samples, and some variables with low contributions were removed. The MDI results of the cloudy-sky and 261 

clear-sky models are shown in Fig. 3. The results indicate that GLST, temporal characteristic P, and radiation 262 

data are the main contributors to the models. However, the variables with low MDI values did not indicate an 263 

insufficient correlation with LST. This may have been caused by a higher correlation with the variables at the 264 

ranking top, which is also a characteristic of the MDI method. We eliminated the variables with an MDI value of 265 

less than 1 %. The variables ranked in the last four were eliminated. There were no obvious changes in the model 266 

accuracy after feature selection, which demonstrates that the eliminated variables were redundant for the model 267 

construction. After feature selection, the LST estimation can be expressed as: LST = f (GLST, P, LWDN, DSR, 268 

B-VIS, LAI, height, B-NIR, DOY, SZA, B-SH, RAA, and VZA). The temporal characteristic P was only used in 269 

the cloudy-sky model.  270 
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 271 

Fig. 3 MDI results of cloudy-sky and clear-sky models. 272 

Several important RF parameters also required adjustments. Accordingly, n estimators, max depth, max 273 

feature, and min sample leaf of the RF model were adjusted after the feature selection. N estimator is the RF 274 

frame parameter that determines the maximum number of trees. Max depth, max feature, and min sample leaf 275 

limit the maximum number of the depth and features in the tree structure, and the minimum number of samples 276 

required to split an internal node, respectively (Pelletier et al. 2016). We used grid search combined with a 277 

random search to determine the parameters. The grid search performs multiple cross-validations for each 278 

parameter combination within a certain range according to the accuracy of the model, and it selects the 279 

parameter combination with the highest average score as the best parameter. This method can provide accurate 280 

parameter optimization results, but the efficiency is significantly low for large datasets. Therefore, we firstly used 281 

random search to obtain a set of parameters, which were used as a reference for the setting of grid search, and then 282 

obtained the optimal parameters through the grid search. After tuning, the model parameters were set as follows: 283 

n estimators = 420, max depth = 43, max feature = 9, min samples leaf = 1. 284 

3.3 Evaluation approaches 285 

Both independent validation with samples from three years (2010, 2011, and 2017) and 10-fold 286 

cross-validation (CV) were used for the model validation. In the process of 10-fold CV, the training dataset was 287 

divided into ten folds. Among them, nine folds were utilized to train the model, and one was used for model 288 

validation. This process was repeated 10 times until all 10 folds were used for the independent validation. The 289 

above validation methods were also used to examine the sensitivity of the models. In addition, we evaluated the 290 
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model performance on individual sites, seasons, and land cover types. Lastly, we applied the final models to the 291 

CONUS for 2010 and 2011. The generated LST product was compared with the corresponding MODIS LST and 292 

GLDAS LST. 293 

4. Results analysis 294 

4.1 Model training and validation 295 

Figure 4 shows the density scatterplots of the training results using data from 2003 to 2009 and 2012–2016. 296 

For the cloudy-sky and clear-sky models, the root-mean-square-error (RMSE) = 2.536 and 2.354 K, R² = 0.952 297 

and 0.973, bias = −0.005 and 0.005 K, respectively. The training results indicate that both models performed 298 

well. The clear-sky model presented a slightly better accuracy than the cloudy one in the model training. The 299 

validation results using data from 2010, 2011, and 2017 are shown in Fig. 5. The two models have comparable 300 

accuracy, with RMSE = 2.767 and 2.756 K, R² = 0.943 and 0.963, and bias = −0.143 and −0.138 K, respectively. 301 

The training and individual validation results suggest that both fitting models had no obvious overfitting and can 302 

robustly estimate LST. The 10-CV results, shown in Fig. 6, can further verify the stability of the model 303 

performance. According to the training and 10-CV results, the clear-sky model presents slightly higher accuracy, 304 

which is comparable to the validation results. Therefore, the obtained difference was probably caused by the 305 

different datasets used. In general, auxiliary products present larger uncertainty under cloudy sky conditions. The 306 

proposed T-RF method for the cloudy-sky model effectively provided an accuracy comparable with the clear-sky 307 

model. Overall, the accuracy of the model indicates the feasibility of the proposed methods for estimating all-sky 308 

LST. 309 
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 310 

Fig. 4. Density scatterplots of model training for (a) cloudy-sky and (b) clear-sky models 311 

 312 

Fig. 5. Density scatterplots of model validation for (a) cloudy-sky and (b) clear-sky models 313 

 314 

 315 

Fig. 6. Density scatterplots of sample-based cross-validation results for (a) cloudy-sky and (b) clear-sky models. 316 

 317 
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As shown in Table 3, we further derived the statistics from the individual validation datasets for the 318 

different overpass-time observations and different satellites for the cloudy-sky and clear-sky models separately. 319 

The left table shows the accuracy of the two models during daytime and nighttime, respectively. The results 320 

indicate that the accuracy of nighttime is higher than daytime in both models. In the daytime, the in situ LST 321 

measurements may suffer from the influence of solar radiation, which brings uncertainty. During the daytime, 322 

the spatial thermal heterogeneity of the land surface is relatively high, and the TIR directional anisotropy is 323 

higher and more complicated (Cao et al. 2019; Lagouarde et al. 2012; Xu et al. 2019). In addition, the LST value 324 

during daytime is relatively high than at nighttime, which can result in a higher RMSE value. The higher 325 

accuracy at nighttime than at daytime has also occurred in the validation of other LST products (Duan et al. 326 

2018; Shwetha and Kumar 2016; Wang and Liang 2009). For the cloudy-sky model, the accuracy of MOD is 327 

higher than that of MYD, with respective RMSE values of 2.71 and 2.82 K. For the clear-sky model, the RMSE 328 

is similar, but the bias of MYD is −0.27 K, which is larger than that of the MOD (0.01 K). Both models show the 329 

relatively higher accuracy of MOD.This probably occurs due to the earlier observation time of MOD at which the 330 

spatial thermal heterogeneity of the land surface is generally lower than that in the afternoon when MYD 331 

overpasses. 332 

 333 

    Table 3. Individual validation of the models at 334 

dayti335 

me 336 

and 337 

night338 

time (left), and of MOD and MYD (right).     339 

 340 

  R² RMSE (K) Bias (K) N 

Cloudy Daytime 0.94 3.09 0.15 32025 

Nighttime 0.94 2.40 -0.44 31574 

Clear Daytime 0.94 3.02 0.13 32793 

Nighttime 0.92 2.41 -0.44 28702 

  R² RMSE (K) Bias (K) N 

Cloudy  MOD 0.94 2.71 -0.13 30724 

MYD 0.94 2.82 -0.15 32875 

Clear MOD 0.96 2.76 0.01  28778 

MYD 0.96 2.75 -0.27 32717 
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In generating of the product, we established two models using the T-RF or RF method for the cloudy-sky 341 

models. The same cloudy-sky datasets were used for comparison. The training and validation results for the 342 

T-RF and RF methods are shown in Table 4. The results show that the T-RF algorithm performs slightly better 343 

than the traditional RF in terms of both the training and validation results. The error histograms of the models 344 

and MODIS LST against in situ LSTs using independent validation datasets are shown in Fig. 7. The error 345 

distribution of the T-RF cloudy-sky model (Fig. 7a) performed slightly better than that of the RF-based 346 

cloudy-sky model (Fig. 7b) with mean values of −0.14 and −0.19 K and std values of 2.76 K and 2.90 K, 347 

respectively. Although the accuracy between the two models is less than 0.2 K, it is the average error of all 348 

stations. The results obtained from the clear sky models (Fig. 7c) outperformed MODIS LST (Fig. 7d), with 349 

mean values of − 0.14 and − 0.36 K, and std values of 2.75 and 3.01 K, respectively.  350 

Table 4 Training and validation results of T-RF and RF methods for the cloudy-sky model. 351 

 Training Validation 

RMSE (K) Bias (K) R2 RMS

E (K) 

Bia

s (K) 

R

2 

T

-RF 

2.536 −0.005 0.952 2.767 −0.

143 

0

.943 

R

F 

2.621 0.006 0.949 2.914 −0.

191 

0

.937 

 352 
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Fig. 7. Error histograms of (a) T-RF cloudy-sky model, (b) RF cloudy-sky model, (c) clear-sky model, and (d) MODIS clear sky LST 353 

against independent in situ LSTs. 354 

 355 

4.2 Model performance at individual sites 356 

Figure 8 shows the spatial distributions and histograms of the RMSE calculated by individual validation 357 

results of the cloudy-sky model, clear-sky model, and corresponding MODIS clear-sky LST. The background 358 

color represents the elevation data from GMTED2010. For the cloudy model (Fig. 8a), the RMSE values of all 359 

individual sites ranged from 1.67 to 3.89 K. According to the corresponding histograms, over 70 % of the 360 

stations have RMSE values smaller than 3 K. However, it has a relatively lower accuracy on the complicated 361 

terrain in the western part of the CONUS. In regions with relatively high elevations, complex atmospheric 362 

conditions affect the estimation of surface parameters. In addition, complex topography increases TIR directional 363 

anisotropy (Cao et al. 2021; Jiao et al. 2019), leading to more uncertainty in estimating LST. This phenomenon 364 

also exists in MODIS LST products (Fig. 8e) and other research (Zhao et al. 2020). For the clear-sky models, the 365 

results of RMSE values and MODIS LST were 1.62–4.32 K and 1.66–4.88 K, respectively. The accuracy of the 366 

clear-sky and cloudy-sky models are comparable, and the RMSE values of over 60 % of the sites are below 3 K. 367 

Nevertheless, the RMSE value of a few sites exceeds 4 K. The relatively higher RMSE may be caused by a 368 

higher LST value under clear-sky conditions. In contrast to cloudy-sky model, temporal information is not used 369 

in the clear-sky model. Moreover, few sites with large errors appear in the center of the CONUS only in the 370 

clear-sky model. These errors likely occurred because parts of the in situ measurements were affected by the 371 

solar radiation under clear-sky conditions. Solar radiation also increases the LST heterogeneity and TIR 372 

directional anisotropy, resulting in differences between in situ and MODIS pixel-scale LST (Cao et al. 2019; 373 

Wang and Liang 2009). Overall, the accuracy of individual sites of the cloudy-sky model and clear-sky models 374 

were generally similar, and the accuracy of the clear-sky model was comparable to MODIS LST. 375 

 376 
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 377 

Fig. 8. RMSE spatial distributions (left) and histograms (right) of (a, b) cloudy-sky model, (c,d) clear-sky model, and (e, f) MODIS 378 

clear-sky LST. The spatial distribution figures are based on the DEM background. The red lines in the histograms represent 25 %, 50 %, and 379 

75 % of the sites. 380 

4.3 Model performance in seasons and land cover types 381 

Figure 9 shows the validation statistics of the proposed models for each season. The RMSE results (Fig. 9a) 382 

show the comparable accuracy of the cloudy-sky and clear-sky models, and both models show relatively high 383 

uncertainty in spring and summer. The reason for that may be that these seasons represent the growing and peak 384 

seasons of vegetation, which can affect the LST values. The R² values (Fig. 9b) of the cloudy-sky model are 385 

lower in spring and summer, and the R² values of the clear-sky model are all higher than those of the cloudy-sky 386 



21 

 

model. The absolute bias values in summer and winter are relatively high (Fig. 9c). However, the biases in all 387 

seasons are not large, and the maximum absolute value is below 0.3 K. In general, seasonal differences in the 388 

accuracy of the models exist, but they are not significant. 389 

 390 

Fig. 9. (a) RMSE, (b) R², and (c) bias values of the validation results of the proposed models during spring, summer, autumn, and 391 

winter. 392 

 393 

Table 5 lists the validation results of the cloudy-sky and clear-sky models for different land cover types. 394 

Among all land cover types, forest presented the highest accuracy, and the RMSE values in both models were 395 

less than 2.5 K. The accuracies of shrublands and grasslands were slightly lower than those of other vegetation 396 

types. Except for barren and snow/ice, the other land cover types presented similar validation results. The reason 397 

for the relatively poor performance of barren and snow/ice may be the high albedo and low specific heat capacity 398 

in these areas. For the barren land, there are significant biases with -0.56 K and -0.26 K under the cloudy-sky 399 

and clear sky models, respectively. The LST may be underestimated due to the overestimation of emissivity on 400 

barren land (Duan et al. 2019; Zhang et al. 2019a). Otherwise, there is a limited amount of available snowy 401 

observations in CONUS, affecting the model stability under snowy conditions. The poor accuracy of the LST on 402 

snow/ice and barren surface is also reflected in other study (Williamson et al. 2017; Zhang et al. 2019a; Zhang et 403 

al. 2021). In general, there were no significant differences between the results for different land cover types. In 404 

the proposed models, the differences between the maximum and minimum RMSE values were less than 2 K, 405 

which is consistent with the results obtained in other study (Yoo et al. 2020). 406 
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 407 

Table 5 Validation results of cloudy-sky and clear-sky models for different land cover types. 408 

 Cloudy-sky model Clear-sky model 

Land cover 

types 

RMS

E (K) 

Bia

s (K) 

R

² 

RMS

E (K) 

Bias 

(K) 

R

² 

Forest 2.27 -0.

08 

0

.94 

2.29 -0.1

8 

0

.96 

Shrubland 3.35 -0.

14 

0

.94 

2.58 0.04 0

.98 

Savannas 2.91 -0.

07 

0

.94 

2.59 0.07 0

.94 

Grassland 3.15 -0.

27 

0

.94 

2.80 -0.2

7 

0

.96 

Wetlands 2.51 -0.

15 

0

.92 

2.25 -0.2

5 

0

.98 

Croplands 2.57 -0.

09 

0

.96 

2.99 -0.1

9 

0

.96 

Urban 2.83 -0.

54 

0

.94 

3.39 -0.1

8 

0

.94 

Barren 3.24 -0.

56 

0

.92 

3.71 -0.2

6 

0

.85 

Snow/ice 3.46 0.1

4 

0

.83 

3.87 0.88 0

.85 

 409 

4.4 Spatial pattern and temporal variability analysis 410 

The proposed T-RF model was used for cloudy pixels. However, for a small part of the pixels, there were 411 

no available clear-sky pixels. According to the rough statistics of the training and validation datasets, less than 5 412 

% of them did not have a match for clear-sky LST. Therefore, the traditional RF method was supplemented with 413 

T-RF for a small number of cloudy pixels. The comparison of two cloudy models is further described in the Sect. 414 

5. Figure 10 shows the MOD daytime LST images (a–d), corresponding estimated all-sky LST images (e–h), and 415 
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GLDAS LST images (i–l) at 93, 180, 276, and 360 Julian days in 2010. It is clear that the original MODIS LSTs 416 

show different extents of missing areas caused by cloud contamination, whereas the estimated LSTs present 417 

spatially continuous results. For the same day, the three products show a similar spatial pattern on clear sky 418 

conditions. The spatial distribution follows a latitudinal gradient with relatively low values in higher latitude 419 

areas caused by the change in solar radiation. In the summer and autumn, the eastern area has relatively high 420 

LST values than the western area due to the forest and cropland in the eastern area, which mitigates the effects of 421 

solar heating (Li et al. 2018). In addition, all of them show the same seasonal LST dynamics. 422 

 423 

Fig. 10. (a-d) Original Terra MODIS LST daytime LST images, (d-h) estimated LST images, and (i-l) their corresponding GLDAS LST 424 

images on four different days in 2010 (93, 180, 276, 360 Julian days). 425 
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Despite the observed similarities, there are differences among the datasets. Although the GLDAS LST can 426 

demonstrate the overall spatial pattern of LST, it is inferior compared to the other two products in spatial details, 427 

especially in areas with complicated terrain (e.g., western part of CONUS). The density scatterplots of the 428 

GLDAS LST, clear-sky MODIS LST, Stefan-Boltzmann derived LST, and estimated LST using the validation 429 

dataset are shown in Fig. 11. The accuracy of the clear-sky MODIS LST (Fig. 11b) is RMSE = 3.033 K, Bias = 430 

−0.362 K, R² = 0.955, which is comparable but relatively low than that of the clear-sky model (Fig. 6b). The 431 

uncertainty of the estimated all-sky LST was better (RMSE of 2.870 K) than that of the GLDAS LST (4.157 K). 432 

The R2 value also improved from 0.904 (GLDAS LST) to 0.954 (estimated LST). The proposed model 433 

effectively improved the dispersion of GLDAS LST in the low- and high-temperature regions at both ends, 434 

which demonstrates the improvement of the estimated all-sky LST obtained in this study. Although previous 435 

studies had already considered common ancillary data such as NDVI and DEM (Hutengs and Vohland 2016), 436 

our research introduces DSR, albedo, LAI, and other types of data. The LWDN variable was used for the first 437 

time, and it provides a greater contribution to the LST estimation compared to other inputs. The 438 

Stefan-Boltzmann derived LST (Fig. 11c) was retrieved from LWDN and surface upwelling longwave radiation 439 

from LWNR product and BBE using the Stefan–Boltzmann law. The accuracy of the Stefan-Boltzmann derived 440 

LST is RMSE = 4.128 K, which is comparable to GLDAS LST, but lower than the estimated LST. The proposed 441 

algorithm can accurately obtain the all-sky LST and broadly represent the original thermal pattern of the study 442 

area. Furthermore, the LSTs of both large cloud-covered regions and regions covered by small clouds were 443 

effectively estimated, thus representing an advantage over traditional methods. 444 

 445 
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Fig. 11. Density scatterplots of (a) GLDAS LST, (b) clear-sky MODIS LST, (c) Stefan-Boltzmann derived LST and (d) estimated 446 

all-sky LST from independent validation dataset. 447 

Fig. 12 shows a temporal comparison among the estimated LST, in situ LST, and MODIS LST over six 448 

sites from different regions in 2010. The observation time of the data is the same as that of the daytime MOD 449 

LST. The black and red lines represent the in situ LST and estimated all-sky LST, respectively. The 450 

corresponding MODIS LST under clear-sky conditions is shown as a blue circle. The temporal variability of the 451 

six sites indicates that the estimated LST sufficiently captured seasonal and daily changes, with an accuracy 452 

comparable to the MODIS LST. It should be noted that there were days when high LSTs sharply dropped, and 453 

the estimated LST can capture such low values, as shown in Fig. 11.a (DOY 330). Because the variables used are 454 

instantaneous or daily, the proposed method performs better than traditional methods, such as temporal 455 

interpolation, for capturing extreme and sudden weather conditions (Metz et al. 2014). In addition, all estimated 456 

LST time series presented excellent temporal consistency with the in situ LSTs at different sites, at RMSE < 3.27 457 

K, bias < 1.24 K, and R2 > 0.96. 458 
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 459 

Fig. 12. Time series for in situ LST, estimated all-sky LST, and clear sky MODIS LST in 2010 six sites at different regions. The latitude 460 

and longitude of the sites are: (a) 48.30783°, −105.1017°; (b) 35.93109°, −84.33242°; (c) 36.62373°, −116.01947°; (d) 38.7441°, −92.2°; (e) 461 

36.6358°, −99.5975°; (f) −34.3349°, 106.7442°. The altitudes are 634, 381, 1004, 239, 647, and 1596 m, respectively. The statistical metrics 462 

of estimated LST and MODIS LST against in situ LST are displayed in red and blue, respectively. 463 

5 Discussion 464 

In this study, all-sky LST was estimated using the T-RF and RF models by constructing a non-linear 465 

relationship between the reanalysis data, radiation variables, land surface characteristics variables, and in situ 466 

LSTs. The accuracy of the estimated all-sky LST is acceptable. There was no significant difference between the 467 

validation results of the clear-sky (RMSE = 2.756 K) and cloudy-sky (RMSE = 2.767 K) models, and the clear 468 

sky estimations are comparable to the corresponding MODIS LST products on a temporal and spatial scale, 469 

showing high consistency. In addition, there were no obvious differences in the accuracy of the models for Terra 470 

and Aqua MODIS observations during the daytime or nighttime, which demonstrates the stability of the model at 471 

different observation times. 472 
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Estimating LST from the in situ measurements has advantages, but there are two issues to discuss. First, 473 

there is the issue of site representativeness. There may be some inhomogeneous sites so that the ‘point’ 474 

measurements may not be able to represent the entire pixel. We initially selected the sites and the std of the 475 

selected sites were below 3 K. Through experiments, we found that removing the selected sites with larger std 476 

(above 2K) has basically no effect on the overall accuracy of the model, showing in the table 6. The reason may 477 

be that the number of samples with the std of site larger than 2 K is very small compared to total samples. When 478 

the sites were kept only with std below 1 K, the accuracies were slightly improved by 0.208 K and 0.161 K for 479 

clear-sky model and cloudy-sky model, respectively. In addition, we further examined the relationship between 480 

the heterogeneity of selected sites and estimation accuracy shown in Fig.13. There was no significant correlation 481 

between estimation accuracy and the site heterogeneity under both clear-sky conditions (R = 0.366) and 482 

cloudy-sky conditions (R = 0.206). This illustrated that the heterogeneities of the selected sites in this study had 483 

no significant impact on the model construction.  484 

 485 

Fig.13. The relationship between site accuracy and site STD under (a) clear-sky condition and (b) cloudy-sky condition. 486 

Table 6 The accuracy of different independent datasets selected based on the std value of sites  487 

 Clear sky Cloudy sky 

Range of std (K) RMSE (K) N RMSE (K) N 

0-1  2.525  38801 2.602 40186 

0-2  2.733 58863 2.761 60123 

0-3  2.756 61495 2.767 63599 
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 488 

As initially clarified in Cao et al. (2019), the thermal radiation directionality (TRD) leads to the definition 489 

differences of MODIS LST and in situ LST extracted from pyrgeometer measurement. The in situ LST 490 

measurement (i.e., the reference of our RF LST product) is close to hemispherical LST, while MODIS LST is a 491 

directional LST. Since we used the in situ LST to construct the model, there may be differences between our 492 

product and MODIS LST. Thus, we made a further comparison. Figure 14 shows the spatial distribution and 493 

corresponding histogram of the estimated LST bias against MODIS LST from 2010 to 2011. The bias statistics 494 

are mean= 0.80 K, std = 1.28 K. The overall results are relatively consistent, but there are differences in the 495 

western CONUS. The differences probably come from the relatively high heterogeneity (Xu et al. 2019) and 496 

thermal radiation directionality (TRD) effect (Cao et al. 2019), which is more pronounced in complex terrains. 497 

Many studies have reported the large differences of LST under different view angles (Cao et al. 2021; Hu et al. 498 

2016). MODIS LST is observed from 0° ups to > 60°, while the proposed LST retrieval from in situ LST. 499 

The difference of view angles may lead to the difference between the estimated LST and MODIS LST. 500 

Meanwhile, we have compared the error distribution via the VZA of the estimated LST and MODIS LST, using 501 

the separated validation dataset. The error distribution is shown in Fig.15. The error of the estimated LST is 502 

relatively stable with the change of VZA. However, as for MODIS LST, with the increase of VZA, the part 503 

where the density points gather gradually deviates from 0. TRD is a complicated process and is not the research 504 

content of this study, therefore, we did not discuss it further. From the above comparison, difference exists 505 

between the estimated LST and MODIS LST. Theoretically and in practice, in contrast to MODIS LST, our 506 

proposed LST is less affected by the observation angle. 507 
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 508 

Fig. 14. Spatial patterns of statistical metrics of (a) bias between the estimated LST and MODIS LST under clear sky conditions, and 509 

corresponding frequency distribution histograms (b) from 2010 to 2011. 510 

 511 

Fig.15.The error distributions of the estimated LST (a) and MODIS LST (b) against in situ LST from the separated validation dataset 512 

    Compared with previous research, the method proposed in this paper has certain advantages. First, the 513 

variables used in this paper are all from optical remote sensing and reanalysis products, which are all-sky data 514 

and worldwide. Thus, it provides a possibility to expand the proposed method to other regions. In contrast to the 515 

PMW data, the data used avoided dealing with the uncertainty caused by different sampling depths and swath 516 

gaps. Meanwhile, the data used has a continuous and long sequence, which can be used to produce long-term 517 

continuous all-weather LST products. Second, the model is trained with real in situ LSTs instead of clear-sky 518 

MODIS LSTs for both clear-sky and cloudy-sky conditions, thus avoiding obtaining the hypothetic cloudy LST. 519 

Meanwhile, using the in situ LSTs reduced the uncertainty caused by different view angles. Third, with the 520 

development of advanced remote sensing data, the method proposed in this paper uses sufficient radiation 521 
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variables including LDWN and DSR with high resolution, which considered the LST under the cloudy sky, and 522 

was affected by changing the solar radiation and downward longwave radiation. Furthermore, the proposed 523 

method has high efficiency. Once the models are trained, they can be easily used for generating long time series 524 

all-sky LST products. The generated product can be used for agricultural drought monitoring, climate change 525 

analysis, and also as input to estimate other parameters, such as air temperature, soil moisture, etc. 526 

However, the method also has limitations. Although the highest possible amount of representative ground 527 

stations in the long-term sequence was selected and an independent dataset was used for validation, it was still 528 

difficult to quantitatively evaluate the areas without in situ observations. In addition, on the surface types of ice, 529 

snow, and barren, as well as areas with high thermal heterogeneity, the accuracy was relatively low, which is a 530 

difficulty also faced by other methods. In the future, the effects of surface terrain and spatial information should 531 

be considered, and deep learning should be incorporated to explore a more adaptive model using the information 532 

provided by remote sensing observations and data products, such as geostationary satellite sensors. 533 

6. Conclusions 534 

We aimed to estimate LST under all-sky conditions from different product data and other auxiliary 535 

information. To achieve this, sufficient variables from optical remote sensing and reanalysis data were used, 536 

including radiation variables, land surface characteristics variables, and geographical and topographical 537 

parameters. All variables were available under all-sky conditions and contributed to the estimation of LST after 538 

feature optimization. To further improve the model performance under cloudy-sky conditions, temporal 539 

information was introduced in the RF model. This procedure was applied for instantaneous observations from 540 

both MOD and MYD sensors to obtain daily LST at daytime and nighttime. The major conclusions are shown as 541 

follows. 542 

 (1) For the cloudy-sky and clear-sky models, the validation results of the proposed models presented high 543 

accuracy, with RMSE = 2.767 and 2.756 K; R² = 0.943 and 0.963; bias = −0.143 and −0.138 K, respectively. 544 
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The T-RF method used for the cloudy-sky model presented a slightly higher accuracy than the traditional RF 545 

method (RMSE = 2.914 K, bias = −0.191 K, R² = 0.937). There were no significant differences in the accuracy 546 

between clear-sky and cloudy-sky estimations. The 10-cross validation results (RMSE=2.616 K, and 2.474 K) 547 

indicate that the constructed models have a robust performance.  548 

(2) The accuracies of individual sites from the separated dataset are 1.67 K−3.89 K under cloudy sky 549 

conditions. In contrast, those under clear-sky condition are 1.62 K−4.32 K, which is comparable to MODIS LST. 550 

The sites in the western part of CONUS have relatively lower accuracy, especially in mountainous areas. 551 

Besides, in contrast to MODIS LST, the estimated LST in this study is less affected by the directionality effect. 552 

(3) In terms of temporal variability, the estimated LSTs were highly consistent with in situ LST and 553 

comparable with MODIS LST. The performance of the proposed method was excellent for daily LST estimation 554 

since daily LST variation and extreme events were captured. In terms of the spatial distribution, the estimated 555 

LSTs have the similar patterns with MODIS LST and effectively fill the data gaps. Besides, the estimated LSTs 556 

have more spatial details than GLDAS LST under all-sky conditions. The estimated LST (RMSE =2.870 K) has 557 

higher accuracy than GLDAS LST (RMSE = 4.157 K), Stefan-Boltzmann derived LST (RMSE = 4.128 K) and 558 

MODIS LST (RMSE = 3.033 K). 559 

Thermal infrared sensors are unable to provide LST data under cloudy conditions. High-accuracy all-sky 560 

LSTs with 1 km resolution are in high demand. The proposed methodology is a feasible way to predict LST at 561 

high spatial and temporal resolution under all-sky conditions at all land cover types during daytime and 562 

nighttime. It provides a new framework and advances capabilities for reconstructing other sensors and other 563 

regions using local data. This capability will be beneficial for land surface monitoring and ecological dynamics. 564 

However, this method does not consider spatial information. Future development should focus on using deep 565 

learning methods that consider both temporal and spatial information. 566 
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