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Abstract 8 

The top-of-atmosphere (TOA) albedo, a key component of the earth’s energy balance, can be 9 

monitored regularly by satellite observations. Compared to the previous study Song et al. (2018), 10 

this paper estimates TOA albedo by directly linking Advanced Very High Resolution 11 

Radiometer (AVHRR) narrowband reflectance with TOA broadband albedo determined by 12 

NASA’s Clouds and the Earth's Radiant Energy System (CERES) instead of Moderate 13 

Resolution Imaging Spectroradiometer (MODIS). The TOA albedo product developed in this 14 

study has an increased spatial resolution, from 1° to 0.05°, and its starting year has been 15 

extended from 2000 to 1981, compared to the CERES TOA albedo product. Models of lands 16 

and oceans are established separately under different atmospheric and surface conditions using 17 

gradient boosting regression tree (GBRT) method instead of the linear regression models in the 18 

previous study. The root mean square errors (RMSEs) of the cloudy-sky, clear-sky and snow-19 

cover models over land are 11.2%, 9.2% and 2.3%, respectively; over oceans they are 14.6%, 20 

10.6% and 5.6%, respectively. Compared to Song et al. (2018), the improvements of the three 21 

models over land are 28.8%, 29.2% and 68.6%, respectively. Compared to the CERES product, 22 

the new product is much more accurate than that from our previous study. The global annual 23 
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differences of the TOA albedo obtained with the GBRT product and CERES from 2001 to 2014 24 

are mostly less than 5%.  25 

Key words: TOA albedo; AVHRR; CERES; machine learning; Earth’s energy budget. 26 

 27 

1. Introduction 28 

The top-of-atmosphere (TOA) albedo plays a significant role in determining Earth’s 29 

energy balance (Liang et al. 2019; Trenberth et al. 2009; Von Schuckmann et al. 2016). A 30 

decrease of only ~0.01 in the global mean albedo is equivalent to the impact of doubling the 31 

amount of carbon dioxide in the atmosphere, and a decrease of 0.05 will increase the global 32 

surface temperature by ~1 K; thus, it is crucial to accurately estimate the global TOA albedo to 33 

obtain a better understanding of the earth’s energy budget (North et al. 1981; Wielicki and A. 34 

2005). 35 

To date, many TOA albedo products have been derived from data obtained with broadband 36 

sensors (Barkstrom 1984; Duvel et al. 2001; Harries et al. 2005; Loeb et al. 2018; Wielicki et 37 

al. 1996). Their applications, however, have been limited by the short temporal coverages of 38 

the acquired datasets. Recently, multispectral narrowband sensors have been incorporated to 39 

generate relatively high spatial resolution TOA albedo products (Key et al. 2001; Song et al. 40 

2018; Urbain et al. 2017; Wang and Liang 2016, 2017). For example, Key et al. (2001) retrieved 41 

TOA albedo by converting narrowband reflectances to broadband reflectance and correcting 42 

the TOA broadband reflectance for anisotropy by utilizing data from the Advanced Very High 43 

Resolution Radiometer (AVHRR) on board the National Oceanic and Atmospheric 44 

Administration (NOAA) polar orbiting satellite. However, their product only covers the Arctic 45 
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and Antarctic, which limits its application. Similarly, the newly released TOA albedo product 46 

from the Climate Monitoring Satellite Application Facility (CM SAF) is also spatially limited 47 

(70°N–70°S, 70°W–70°E). This product is generated by combining data from the Meteosat 48 

MVIRI and SEVIRI instruments operated by the European Organization for the Exploitation of 49 

Meteorological Satellites (EUMETSAT) Data Center, which have 0.05° spatial resolution and 50 

cover the years 1983-2015.  51 

Recently, Wang and Liang (2016) retrieved TOA albedo over land from Moderate 52 

Resolution Imaging Spectroradiometer (MODIS) data using a hybrid method. To produce a 53 

long-term high-resolution time series of TOA albedo, in our previous work (Song et al. 2018) 54 

we took the retrieved MODIS TOA albedo as “true values” during the training process, and 55 

generated TOA albedo products based on AVHRR data using direct estimation models, which 56 

have been widely used to retrieve both surface and TOA albedo (He et al. 2015; Liang et al. 57 

1998; Song et al. 2018; Tang et al. 2006; Wang and Liang 2016). The models are built under 58 

clear-sky, snow-cover and cloudy-sky conditions using linear regression, respectively. The 59 

previously developed AVHRR TOA albedo (TAL-AVHRR) is the first long-term high spatial 60 

resolution TOA albedo product of its kind, but it has two main issues. First, the product is only 61 

available over land. Second, its accuracy is relatively low in high-latitude regions. Our recent 62 

intercomparison of multiple TOA albedo products showed that the differences between TAL-63 

AVHRR and the other products are relatively large, especially for high latitude regions before 64 

the year 2000 (Zhan et al. 2019). 65 

To address these issues, in this current study we have developed a new method to improve 66 

TOA albedo estimations from AVHRR data. There are four major improvements over the 67 
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previous study by Song et al. (2018) (hereinafter S2018). Firstly, machine-learning methods, 68 

which have the advantages in fitting nonlinear relationships, are explored to replace the linear 69 

fitting. Three common machine-learning methods are adopted for the model building, including 70 

multivariate adaptive regression splines (MARS), gradient boosting regression tree (GBRT) 71 

and random forest (RF). Secondly, we use the recently released National Oceanic and 72 

Atmospheric Administration (NOAA) AVHRR Climate Data Record (CDR). This represents an 73 

improvement relative to the AVHRR data (AVH02C1) of the land Long-Term Data Record 74 

(LTDR) project, which includes only one observation daily for each pixel. There are many more 75 

observations available at high-latitude regions each day in the CDR, which provides the 76 

potential to improve the accuracy of its products over the Arctic. Third, the training data are 77 

based on the CERES TOA albedo product, which is considered to be the most accurate TOA 78 

radiation product available to date, instead of the previously developed MODIS TOA albedo 79 

product (TAL-MODIS). Lastly, our methods are applied globally, over both land and ocean 80 

surfaces.  81 

The organization of the remainder of this paper is as follows. Section 2 introduces the data 82 

used in this study. Detailed algorithm descriptions are presented in Section 3, while Section 4 83 

shows the results and the corresponding analyses. Conclusions are drawn in the final section. 84 

 85 

2. Data 86 

2.1 AVHRR 87 

2.1.1 NOAA CDR of Visible and Near Infrared Reflectance 88 

The observed radiances of NOAA CDR of Visible and Near Infrared Reflectance  89 
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provide the features for the TOA albedo retrieval algorithm. In S2018, the AVHRR TOA 90 

reflectance data AVH02C1 obtained from Version 4 of the LTDR project is used. There are 91 

three spectral reflectance channels in AVHRR: 0.63 μm (channel 1), 0.86 μm (channel 2), and 92 

1.61 μm (channel 3). In this study, the brightness temperatures of 10.8 μm (channel 4) and 12.0 93 

μm (channel 5) are also used.  94 

 95 

2.1.2 NASA Langley Research Center (LaRC) Cloud and Clear Sky Radiation Properties 96 

dataset 97 

    NASA LaRC Cloud and Clear Sky Radiation Properties dataset (AVHRR Cloud 98 

Properties – NASA) is another satellite dataset derived from AVHRR data. It is generated using 99 

the CERES Cloud Mask and Cloud Property Retrieval System. The algorithm is initially 100 

designed for application to the Tropical Rainfall Measurement Mission (TRMM) and MODIS 101 

data within the CERES program. It provides many atmospheric and land surface variables, such 102 

as cloud masks, snow and ice cover flags, cloud optical depth, cloud top air temperature, cloud 103 

base air temperature, cloud top height, cloud base height, shortwave broadband albedo and 104 

longwave broadband flux. Cloud masks and snow and ice cover flags are used to identify the 105 

cloudy and snow-covered pixels. 106 

 107 

2.2 CERES 108 

CERES is a broadband instrument onboard TRMM, Terra, Aqua, Suomi National Polar-109 

orbiting Partnership (Suomi NPP) and NOAA-20, which measures shortwave reflected 110 

radiation (0.3–5 μm), longwave thermal radiation (8–12 μm) and broadband radiation from 0.3–111 
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200 μm (Wielicki et al. 1998). The CERES shortwave fluxes have been developed using angular 112 

distribution models (Loeb et al. 2005; Loeb et al. 2003; Su et al. 2015), while the Level-2 Single 113 

Scanner Footprint (SSF) provides instantaneous TOA albedo at a resolution of 20 km (Doelling 114 

et al. 2013). This study takes CERES SSF data as labels for the machine learning models, while 115 

in S2018 MODIS TOA albedo are taken as “true values”. Currently, the CERES fluxes are 116 

considered to be the most accurate coarse-resolution products. Additionally, the Level-3 117 

Synoptic products (i.e., the SYN1deg data) (Doelling et al. 2013), which consist of hourly and 118 

daily/monthly mean TOA radiative fluxes, are used as reference values in both S2018 and this 119 

study. They began in March 2000 with a resolution of 1 degree, and we used their latest version 120 

Edition4A, released during September 2017.  121 

 122 

2.3 MERRA-2 123 

Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-124 

2) is developed as an Earth System reanalysis product (Gelaro et al. 2017). It provides global 125 

dynamic and meteorological fields from 1980 to the present with a spatial resolution of 0.5 × 126 

0.625 degrees. It consists of 42 collections that contain multiple variables, and has been used 127 

for a variety of climate research and renewable energy studies (Wargan and Coy 2016). In 128 

S2018, they used the linear regression models, so MERRA-2 dataset is not used. In this study, 129 

two MERRA-2 variables are used as the input feature of the machine learning models: (1) TOA 130 

incoming shortwave flux (SWTDN), and (2) TOA net downward shortwave flux (SWTNT). 131 

MERRA-2 observing system includes atmospheric motion vectors from AVHRR, and AOD 132 

observations are also derived from AVHRR reflectances. Despite its uncertainty, the inclusion 133 
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of MERRA-2 dataset can reduce the training uncertainties by providing initial values of the 134 

TOA albedo in the training process. 135 

 136 

3. Algorithm Description 137 

Fig. 1 shows a flowchart of the method used to estimate the TOA broadband albedo from 138 

AVHRR CDR. It consisted of three major steps. First, both the AVHRR CDR and CERES SSF 139 

data are pre-processed. The pre-process includes converting both the AVHRR swath data and 140 

CERES SSF data to the 20-km regular gird. Then, the TOA reflectances and brightness 141 

temperatures are extracted from the AVHRR data, and the corresponding TOA albedo are 142 

obtained from the MERRA-2 and CERES SSF data. Meanwhile, the corresponding 143 

solar/viewing geometries and observation times of the AVHRR and CERES datasets are also 144 

extracted. Second, a training dataset containing 2,513,556 samples is established from 145 

coincident AVHRR observations and the CERES TOA albedo product. The criteria of collecting 146 

AVHRR-CERES data pairs includes: (1) the difference in the acquisition time between the two 147 

data sets is limited to 5 minutes, (2) the differences of the solar zenith angle and viewing zenith 148 

angle are less than 5 degrees and the differences of the relative azimuth angle are less than 30 149 

degrees, (3) two datasets are collocated with the same spatial scale of 20 km. Essentially, only 150 

data pairs that are consistent in timing, spatial scale, and solar-viewing geometry are used in 151 

the analysis. To ensure the training data pairs are representative, we collected 12 months of 152 

global collocated AVHRR and CERES data from 2007. In total, 895,257 data pairs are collected 153 

for land, which covered various surface types and atmospheric conditions, and 1,618,299 data 154 

pairs are collected for the ocean model construction. The dataset is randomly stratified into two 155 
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groups, where 90% is used for training dataset and the remaining 10% formed the testing dataset. 156 

Finally, models are built based on the training dataset with cloud/snow/land masks using 157 

machine-learning methods. We evaluated different approaches (MARS, GBRT, RF) and found 158 

GBRT to provide the best results. Thus, we obtained cloudy-sky, clear-sky (non-snow), and 159 

clear-sky (snow) models, where each model is also separated into land and ocean models based 160 

on the land mask. The sample number of different models is shown in Table 1. For the clear-161 

sky and cloudy-sky models, the former is defined as no cloud coverage, while conditions with 162 

cloud fractions larger than 0% are used for the latter. Furthermore, considering the unique 163 

bidirectional reflectance distribution function (BRDF) characteristics of snow-covered surfaces, 164 

snow masks from the AVHRR data are used to build the clear-sky snow-covered models 165 

separately. 166 

 167 

Fig. 1. Flowchart of TOA broadband albedo estimation from AVHRR CDR.  168 

Table 1. Sample number of different models 169 

 Cloudy-sky Clear-sky (Snow) Clear-sky (Non-snow) 
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Land 545023 286506 63728 

Ocean 1488076 54766 75457 

Reanalysis products, which are usually derived by merging available observations with 170 

atmospheric models to obtain best estimates of the states of the atmosphere and land, also served 171 

as model features in this study. Although reanalysis products are not as accurate as satellite 172 

products, they allowed us to refine GBRT results using different data sources. The 173 

corresponding MERRA-2 TOA albedo values are obtained by interpolation based on the 174 

observation time, and they are used to provide an initial value or first guess for the model. 175 

MERRA-2 is chosen among the common reanalysis products as it has a relatively high temporal 176 

resolution (1 hour). The TOA albedo is used as model features, which is calculated as: 177 

������ = (SWTDN − SWTNT)/SWTDN   
                

(1) 178 

As daily TOA albedo play a more important role in analyzing Earth’s energy budget than 179 

instantaneous TOA albedo, conversion ratios are needed to convert the latter to the former. 180 

They are needed due to diurnal variations in TOA albedo caused by underlying atmospheric or 181 

surface properties (Gristey et al. 2018; Rutan et al. 2014). S2018 proposed two kinds of 182 

conversion ratios: (1) real-time conversion ratios and (2) climatology conversion ratios, both of 183 

which are based on CERES three-hourly flux data and daily flux data. However, as the CERES 184 

data are not available before 2000, the real-time conversion ratios did not meet the needs of this 185 

study. Therefore, the climatology conversion ratios are used in this study. The climatology 186 

conversion ratios are derived from multi-year CERES flux data from 2001 to 2017 using 187 

Equation (2), in which F�����
�����

 is the daily mean shortwave upward flux and F�����
������  is the 188 

instantaneous shortwave upward flux. r and b, which depend on the location and day of year, 189 
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are the climatology conversion ratios derived by linear regressions. Compared to S2018, the 190 

ratios are updated using CERES hourly data instead of the three-hourly data. After the 191 

instantaneous TOA albedo is obtained, instantaneous shortwave upward flux can be derived by 192 

multiplying with instantaneous shortwave downward flux. Then, daily mean shortwave upward 193 

flux can be calculated from Equation (2). Finally, daily TOA albedo can be obtained by dividing 194 

it by the daily mean shortwave downward flux. 195 

                         F�����
�����

= � ∗ F�����
������ (!) + �                        (2) 196 

4. Results and analysis 197 

4.1 Instantaneous results 198 

The test results over land and oceans using GBRT are shown in Fig. 2. It compares the 199 

results obtained with the estimated instantaneous TOA albedo and the CERES SSF TOA albedo, 200 

the latter of which are taken as labels in the training process. The RMSEs of the GBRT land 201 

model under clear-sky, snow-cover and cloudy-sky conditions are 9.217%, 2.281% and 202 

11.153%, respectively, while over ocean they are 10.586%, 5.644%, and 14.648%. From these 203 

six sub-figures, one can see that there are high-density TOA albedo values around 0.2 for clear-204 

sky and cloudy-sky conditions. For cloudy-sky conditions, this relatively low value can be 205 

attributed to false positive cloud detections or correct cloud detection for rather thin clouds, 206 

where the surface albedo shines through. For the snow-cover model, the values under this 207 

condition are even lower than under the clear-sky condition. This makes sense as there are 208 

various surface types under clear-sky conditions.  209 
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 210 

Fig. 2. Test results of the TOA albedo derived from the GBRT models for (a) clear land (b) snow-cover 211 

land (c) cloudy land (d) clear ocean (e) ice-cover ocean (f) cloudy ocean. 212 

 213 

4.2 Daily time series results 214 

After obtaining the instantaneous TOA albedo, we converted them into daily values using 215 

the conversion ratios. Note that AVHRR CDR provides multiple observations for high latitude 216 

regions (~14 per day), which we averaged to obtain the final daily values. 217 

To show the improvements found here compared to S2018, time series of both results in 218 

2008 are presented in Fig. 3. From Fig. 3, one can see that greater improvements have been 219 

made in high latitude regions. In Fig. 3(a), the differences between the results of S2018 and 220 

CERES can be as large as 0.05 in winter, while the differences between GBRT results and 221 

CERES are mostly less than 0.02. Similar results can be found in Fig. 3(b), which illustrates 222 

the obvious underestimation of the results of S2018 in the Northern Hemisphere in winter. Over 223 
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Antarctic, as shown in Fig. 3(f), overestimations are found in the results of S2018 during the 224 

first 30 days of year, while during the last 40 days of year there are obvious underestimations. 225 

GBRT results, nevertheless, showed good consistency with the CERES data. The reason for the 226 

jump around 50 days of the year in S2018 is that the MODIS TOA albedo, which are taken as 227 

“true values” in the previous training process, contain large uncertainties in the Antarctica. As 228 

we have replaced it with CERES TOA albedo, the discontinuity is resolved. Additionally, 14 229 

daily observations of the AVHRR data in the Antarctica also contribute to the improvement. 230 

Note that there is no sunlight in this region in the summer. Therefore, we only considered the 231 

first 90 days of year for the comparison.  232 

 233 

Fig. 3. Time series of the daily TOA albedo values from CERES (red), S2018 (green), and this study 234 

(blue) in 2008 for the following latitude regions: (a) 60–90°N, (b) 30–60°N, (c) 0–30°N, (d) 0–30°235 
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S, (e) 30–60°S, and (f) 60–90°S. 236 

Additionally, comparisons for years after 2000, when CERES data are available, are 237 

presented in Fig. 4. The mean difference (MD) and standard deviation (STD) between the 238 

estimated daily results and CERES data since January 1, 2001 are shown in the figure. Overall, 239 

there are positive biases in GBRT results when the CERES data are taken as reference, while 240 

negative biases with greater magnitudes are found in the results of S2018, especially from 2001 241 

to 2005. Similarly, improvements are visible in the STD time series, where GBRT results are 242 

significantly lower compared to the S2018 data. The TOA albedo products of Song et al. (2018) 243 

contain large uncertainties in the high-latitude regions, especially during June to August. Thus, 244 

STD increases in these months, and a large annual cycle is shown. For the GBRT results, No 245 

annual cycle is obvious in the mean difference, but there is a visible annual cycle in STD, which 246 

is smaller than the S2018 results. 247 

 248 

 249 

Fig. 4. Mean difference (MD) and standard deviation (STD) between the estimated daily results from 250 

this study, as well as S2018, and the CERES product over land since 2001. 251 
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 252 

4.3 Monthly results 253 

Compared to the daily TOA albedo, monthly products are more widely used when 254 

analyzing the long-term changes of the earth’s energy budget. Therefore, monthly results are 255 

obtained by averaging the daily results. Estimated monthly TOA albedo values and the 256 

differences from CERES SYN TOA albedo in January and July, 2008 are shown in Fig. 5. The 257 

results of S2018 are also plotted to illustrate the improvements found here.  258 

In Figs. 5(a) and 5(b), the north and south pole stand out due to their snow or ice cover, 259 

and the values of low-latitude ocean are relatively low. By comparing Figs. 5(c) and 5(e), we 260 

can see large improvements found in the Antarctic, while in other regions the improvements are 261 

only slight. It is worth noting that the Arctic has no data in January while the Antarctic has no 262 

data in July because of the lack of sunlight. In July, as shown in Figs. 5(b) and 5(d), there are 263 

obvious improvements in high-latitude regions in the Northern Hemisphere. The 264 

underestimations in the results of S2018 are reduced in GBRT results. Additionally, it is worth 265 

noting that the uncertainties over the ocean can be as high as 100%. For example, in Figure 5c, 266 

the low albedo area in the Indian Ocean (~0.1-0.2) exhibits differences to the CERES data in 267 

the range of ~0.1. These uncertainties may attribute to sun glint, and uncertainties in the cloud 268 

flagging have a much larger effect on these low-albedo areas. 269 

 270 
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 271 

 272 

Fig. 5. Estimated monthly TOA albedo values and the differences from the CERES SYN TOA 273 

albedo in January, 2008 (a) estimated monthly TOA albedo (c) differences of this study (e) differences 274 

of S2018, (b), (d) and (f) are the same but for July, 2008. 275 

The RMSEs of GBRT results over land are 7.05% and 8.03% for the two months used in 276 

this study, respectively, which are lower than those of S2018, where the RMSEs are 7.76% and 277 

12.80%, respectively. Over ocean, the RMSEs are 7.55% and 7.72% for January and July, and 278 

the biases are -1.14% and -0.36%, respectively. In panel a, the S2018 results exhibit a slight 279 

negative bias (-0.47%), while the new product exhibits a slight positive bias (1.68%). In panel 280 

b, S2018 has a slight negative bias (-1.80%), while the new product has a slight positive bias 281 

(1.44%). The TOA albedo estimates over oceans are one of the benefits of the new algorithm. 282 

Judging from the results of the two months, it can be concluded that the monthly TOA albedo 283 

can meet the need of long-term Earth’s energy budget analysis. 284 
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 285 

Fig. 6. Fraction of the percentage differences shown in Fig. 5. (a) January, 2008 of land, (b) July, 2008 286 

of land and (c) January and July, 2008 of ocean. 287 

As the advantage of the AVHRR dataset is its long time span, it is beneficial to make 288 

comparisons between the TOA albedo from the different datasets for years before 2000. Here, 289 

the Diagnosing Earth’s Energy Pathways in the Climate system (DEEP-C) product, which 290 

covers the period before 2000, has been included in the intercomparison (Allan et al. 2014). Fig. 291 

7 shows a time series of the DEEP-C, S2018, and our monthly mean TOA albedo, as well as 292 

the percentage differences in the maritime continent region in which significant differences are 293 

found among different TOA albedo products in Zhan et al. (2019). Compared with the S2018 294 

results, ours are much closer to the DEEP-C values. 295 

 296 
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 297 

Fig. 7. Time series of (a) three monthly mean TOA albedo values and (b) the percentage differences 298 

from DEEP-C in MCT region. 299 

Additionally, Fig. 8 shows the global monthly differences between the TOA albedo found 300 

with new product and the CERES results. Good consistency can be seen in terms of the TOA 301 

albedo anomalies, and the percentage differences are mostly within 5%. Compared to the 302 

CERES TOA albedo product, we not only increased the spatial resolution from 1° to 0.05°, but 303 

also extended the starting year from 2000 to 1981. 304 

 305 

Fig. 8. AVHRR and CERES global monthly mean TOA albedo anomalies. The percentage differences 306 

are calculated between the AVHRR and CERES monthly mean TOA albedo in the overlapping period 307 

from 2001 to 2014. 308 

 309 

5. Discussion 310 
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5.1 Incorporation of thermal bands and MERRA-2 data in the training process 311 

One of the improvements here compared to S2018 is the incorporation of thermal bands 312 

and MERRA-2 data when building the training dataset. Additional experiments are conducted 313 

in this section to show the impact of the additional datasets. Here, the thermal bands and 314 

MERRA-2 data are separately removed from the training dataset. Then, we calculated the 315 

corresponding RMSEs with and without these datasets. The results are shown in Tables 2. From 316 

the table, one can see that the RMSEs generally increase when either the thermal bands or 317 

MERRA-2 TOA albedo are removed. For cloudy-sky model, however, the incorporation of 318 

MERRA-2 TOA albedo does not take effect, which may attribute to the variation of clouds in 319 

a short period. For the other two models over land, greater improvements could be achieved 320 

when the MERRA-2 data are incorporated compared to the incorporation of the thermal bands.  321 

Table 2. RMSE and bias values of the test results for the three models under the different 322 

conditions 323 

 

 
With both 

Without 

MERRA-2 

Without 

thermal bands 

RMSE Bias RMSE Bias RMSE Bias 

Cloudy-sky 

model 

Ocean 14.65% 0.004 14.65% 0.004 14.78% 0.005 

Land 11.15% 0 11.15% 0 11.37% 0.001 

Clear-sky 

model 

Ocean 10.59% 0 10.68% 0 11.49% -0.002 

Land 9.21% 0.003 9.49% 0.004 9.22% 0.003 

Snow/ice-

cover model 

Ocean 5.64% -0.005 6.54% -0.006 5.64% -0.005 

Land 2.28% -0.001 2.44% -0.003 2.30% -0.002 

S2018 only used two bands of the AVHRR data, namely the visible band (0.580–0.680 324 

μm) and near-infrared band (0.725–1.100 μm). By incorporating the thermal bands, we not only 325 

provided more information for the model building, but changed the mechanism of the algorithm, 326 

which made full use of the connections among the different bands, through the visible bands to 327 

the thermal bands, and the results exhibited some slight improvements. The incorporation of 328 
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MERRA-2 data is, however, more useful. As a widely used reanalysis dataset, MERRA-2 329 

covers long time period and has relatively high spatial resolution. It can provide, as done here, 330 

first guess values in cases where the quality of the AVHRR data are relatively poor, especially 331 

before the year 2000. Additionally, it is worth noting that this study makes predictions of TOA 332 

albedo using CERES SSF instead of MODIS TOA albedo as the "truth values”, and then 333 

evaluated against CERES SYN. Thus, the evaluation of the S2018 approach is largely 334 

independent, whereas the evaluation for the new method is not independent, which may have 335 

impacted the findings in this study. 336 

 337 

5.2 Selection of instantaneous-to-daily conversion ratios 338 

The uncertainties of the daily TOA albedo retrieved in this study mainly arise from the 339 

instantaneous-to-daily conversion process. Large uncertainties (~0.2) are reported by S2018 in 340 

terms of daily results. The climatology conversion ratios obtained from linear regression models 341 

are unable to capture some real-time changes. Instead, the real-time conversion ratios applied 342 

to the CERES data are able to provide more accurate diurnal variations as they depend on real-343 

time observations, but they are not available before the year 2000. Considering the long time 344 

span of the currently available reanalysis datasets, here we also developed real-time conversion 345 

ratios based on two popular reanalysis datasets (i.e., MERRA-2 and ERA5).  346 

The temporal resolutions of MERRA-2 and ERA-5 (1-hour) are higher than the other 347 

reanalysis datasets, which greatly contributed to the usability of the developed conversion ratios. 348 

Following the scheme of S2018, real-time conversion ratios based on the two datasets are 349 

obtained by building a look-up table for every hour in a day and for observation time t. Table 3 350 
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shows the RMSE and bias values of four daily average results (first day of January, April, July 351 

and October in 2008) using different conversion ratios. In addition to the higher RMSEs, 352 

notable negative biases are also found in the results obtained via the reanalysis data-based 353 

conversion ratios. The biases are -3.79% and -3.55% for ERA-5 and MERRA-2, respectively, 354 

which are higher than those found via the climatology conversion ratios, as the reanalysis 355 

dataset may not capture the diurnal cycle correctly. Therefore, we still choose the climatology 356 

conversion ratios when generating the TOA albedo products. Actually, the climatology ratios 357 

became more usable after using the CERES hourly data instead of the three-hourly data.  358 

Table 3. RMSE and bias values of four daily average results using different conversion ratios 359 

 CERES climatology ratio ERA-5 real-time ratio MERRA-2 real-time ratio 

RMSE 26.51% 29.75% 28.17% 

Bias 1.20% -3.79% -3.55% 

5.3 Effects of sun glint over ocean surface 360 

Sun glint, a phenomenon that occurs when sunlight reflects off the ocean surfaces at the 361 

same angle that a satellite sensor views the surface, may induce extra biases in the retrieval 362 

process in this study. To analyze the effects of sun glint over ocean surface, the glint angle, 363 

which indicates the intensity of sun glint, is used here. The glint angle is defined as: 364 

                 #$���� = cos�((cos #� cos #) +  sin #� sin #) cos ,)              (3) 365 

where #$����  is the glint angle, and #�  ,#)  and ,  are solar zenith angle, viewing zenith 366 

angle, and relative azimuth angle, respectively.  367 

As the intensity of sun glint is larger when the glint angle is smaller (largest when glint 368 

angle equals 0), we remove the samples with small glint angles to illustrate the effects of sun 369 
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glint. The thresholds are set to 0, 10, 20, 30 and 40 degrees, and the corresponding RMSE and 370 

bias are shown in Table 4. From this table, one can see that the RMSEs become even larger 371 

when the samples with smallest glint angles (less than 10°) are removed, which illustrates that 372 

the impact of sun glint on algorithm performance is small. Note that by filtering out more data 373 

we reduce the sample size, which may negatively impact the model performance. 374 

Table 4. Statistics of the results when the samples with small glint angles are removed, using 375 

different thresholds 376 

Threshold Number RMSE Bias 

/ 75457 10.59% 0 

10 50860 10.74% 0 

20 29276 11.13% 0.001 

30 13782 10.85% 0.001 

40 6039 10.88% 0.003 

6. Conclusion 377 

The global TOA albedo is a key component of the earth’s energy budget, and most TOA 378 

albedo products have been developed from data acquired by broadband satellite sensors. In this 379 

study, a robust machine-learning-based method for estimating TOA albedo based on AVHRR 380 

data is proposed, which provides a unique global data source since 1981. Instead of typical two-381 

step methods, we use a direct estimation method, the essence of which is to estimate albedo 382 

from spectral information by establishing a relationship between TOA multispectral 383 

reflectances and TOA albedo. The GBRT machine-learning method is used for model building. 384 

The CERES SSF TOA albedo product provides the labels, and land masks are used to build 385 

land and ocean models separately. Instantaneous TOA albedo are derived from each of these 386 

models, and daily TOA albedos are obtained by multiplying the instantaneous results by 387 

climatology conversion ratios that are based on the CERES daily and hourly TOA albedo. 388 
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The test results show that the RMSEs of the cloudy-sky, clear-sky and snow-cover models 389 

over land are 11.2%, 9.2% and 2.3%, respectively; they are 14.6%, 10.6% and 5.6% over oceans. 390 

Additionally, incorporation of thermal bands and the MERRA-2 TOA albedo is quite necessary 391 

in the training process, as the estimation accuracy generally decreased if they are removed. For 392 

the monthly results, intercomparisons are made among three products, including the widely-393 

used CERES data, GBRT results and the AVHRR TOA albedo estimated by S2018. The 394 

comparisons show that the differences between GBRT results and the CERES data are 395 

significantly reduced in high-latitude regions when compared with the results of S2018. Over 396 

oceans, the accuracy of GBRT results are similar to those found over land. Time series show 397 

that great improvements are made, especially for high-latitude and maritime continent regions 398 

compared to S2018.  399 

Despite the good progress made here, our method still has some room for improvement. 400 

The climatology conversion ratios are not perfect ratios for converting instantaneous results to 401 

daily results, as demonstrated by the large errors found in low-latitude regions (e.g., the tropics) 402 

where multiple daily observations from AVHRR are unavailable. Future work may incorporate 403 

geostationary estimates to more accurately characterize diurnal variations of the TOA albedo 404 

values, which will improve the accuracy of the daily TOA albedo estimations.  405 
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