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Abstract 23 

All-wave net surface radiation is greatly needed in various scientific research and 24 

applications. Satellite data have been used to estimate incident shortwave radiation, 25 

but hardly to estimate all-wave net radiation due to the inference of clouds on 26 

longwave radiation. A practical solution is to estimate all-wave net radiation 27 
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empirically from shortwave radiation and other ancillary information. Since existing 28 

models were developed using a limited number of ground observations, a 29 

comprehensive evaluation of these models using a global network of representative 30 

measurements is urgently required. In this study, we developed a new day-time net 31 

radiation estimation model and evaluated it against seven commonly used existing 32 

models using radiation measurements obtained from 326 sites around the world from 33 

1991–2010. MERRA re-analysis products from which the meteorological data were 34 

derived and remotely sensed products during the same period were also used. Model 35 

evaluations were performed in both global mode (all data were used to fit the models) 36 

and conditional mode (the data were divided into four subsets based on the surface 37 

albedo and vegetation index, and the models were fitted separately). Besides, the 38 

factors (i.e. albedo, air temperature, and NDVI) that may impact the estimation of 39 

all-wave net radiation were also extensively explored. Based on these evaluations, the 40 

fitting RMSE of the new developed model was approximately 40.0 Wm-2 in the global 41 

mode and varied between 18.2 and 54.0 Wm-2 in the conditional mode. We found that 42 

it is better to use net shortwave radiation (including surface albedo) than the incident 43 

shortwave radiation nearly in all models. Overall, the new model performed better 44 

than other existing linear models.  45 

Keywords: Net radiation, Shortwave radiation, Empirical model, Remotely sensed 46 

product 47 



1. Introduction 48 

 All-wave net surface radiation (Rn) constitutes the available radiative energy at 49 

the surface, and as such regulates most biological and physical processes, such as 50 

evapotranspiration (Lu et al., 2014; Lu et al., 2013; Wang and Liang, 2008), 51 

photosynthesis and turbulent and conductive heat fluxes. Thus, accurate estimates of 52 

Rn are essential for understanding the land surface energy distribution, the formation 53 

and transformation of air masses, snow melting calculations(Male and Granger, 1981), 54 

modeling crop growth, and addressing water resource management (Bisht and Bras, 55 

2011; Hwang et al., 2012). Estimation of Rn  is  necessary because it is a key input 56 

for land surface process models, and are also used routinely to calculate 57 

evapotranspiration(Monteith, 1965), which is a critical component of agricultural, 58 

hydrological, and ecological research. 59 

 60 

Rn is the difference between the incoming and outgoing shortwave and longwave 61 

radiation fluxes at the surface. Mathematically described as: 62 
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 (1) 63 

Where Rsi is the incoming shortwave radiation (Wm-2), Rso is the reflected outgoing 64 

shortwave radiation (Wm-2), which is calculated by Rso=α*Rsi, α is the shortwave 65 

broadband albedo (dimensionless), thus Rns is the net shortwave radiation, Rli is the 66 



incoming longwave radiation (Wm-2), Rlo is the outgoing longwave radiation (Wm-2), 67 

and nlR
 

is the net longwave radiation (Wm-2). Rn is normally positive during the 68 

daytime because net shortwave radiation dominates, but negative during the nighttime 69 

because net longwave radiation dominates (Allen et al., 1998).  70 

 71 

If all four components of Eq. (1) are known, the calculation of Rn is 72 

straightforward. Indeed, many radiation measurement towers measure these four 73 

components of radiation, thereby allowing us to determine Rn at individual points. 74 

Various satellite observations have been used to generate radiation products at 75 

regional and global scales (Liang et al., 2010; Liang et al., 2013b; Tang and Li, 2008; 76 

Tang et al., 2006; Wang and Liang, 2009b; Zhang et al., 2014). Satellite observations 77 

from the visible to near-infrared spectrum have been used for estimating incident solar 78 

radiation and surface albedo, and thermal-infrared data for estimating longwave 79 

radiation. There are roughly two types of algorithms for estimating radiation(Liang et 80 

al., 2010), one  calculates radiative quantities from the  derived satellite products of 81 

all relevant  atmospheric and surface variables (e.g., aerosol, cloud, atmospheric 82 

temperature profile), and another estimates radiation directly from satellite  observed 83 

radiance using a regression equation established from  extensive radiative transfer 84 

simulations. 85 

 86 

However, frequent cloud coverage implies that it is extremely difficult to estimate Rn 87 



directly from satellite data, particularly longwave radiation component, because 88 

clouds block the surface information from reaching the sensors. Since incident 89 

shortwave radiation dominates day-time net radiation, methods have been developed 90 

to estimate the incident shortwave radiation from satellite data (Liang et al., 2010). 91 

Satellite data include information from both atmosphere and surface. From the 92 

“clearest” observations (less atmospheric signals) during a temporal window, surface 93 

reflectance/albedo can be retrieved, which can be assumed invariant during a short 94 

period of time. As long as surface information is known, we can determine the 95 

remaining atmospheric component that leads to estimation of incident shortwave 96 

radiation (Liang et al., 2006). One of the challenges is the need for multiple 97 

observations during a day for estimating day-time radiation but most polar-orbiting 98 

satellite sensors, such as MODIS, observe the same surface only a couple of times 99 

daily. One solution is to combine both polar-orbiting satellite data with geostationary 100 

satellite(Zhang et al., 2014), for example, the Global Land Surface Satellite (GLASS) 101 

radiation products at 5km spatial resolution and 3-hour temporal resolution(Liang et 102 

al., 2013a; Liang et al., 2013c). Thus, an important research goal presently is to 103 

develop robust methods for the empirical estimation of Rn from incident shortwave 104 

radiation. 105 

 106 

Although important information can be derived from sustained and uninterrupted 107 

measurements of Rn over a surface, Rn measurements are only available from a small 108 



number of representative radiometric observatories because expensive instruments 109 

and constant maintenance are required (Monteith and Unsworth, 1990). To overcome 110 

the lack of experimental observations, Rn needs therefore to be estimated from 111 

empirical relationships based on physical considerations and meteorological data. 112 

From a practical view point, it is important that Rn can be determined from 113 

relationships that are not location-dependent so they are more universally applicable 114 

and easy to use (Al-Riahi et al., 2003). Consequently, numerous attempts have been 115 

made to calculate Rn based on different empirical methods. Two main types of 116 

empirical methods can be classified according to previous studies. The first type of 117 

methods estimates Rn from incoming shortwave radiation Rsi and other meteorological 118 

variables using simple linear regression (see Section 2.1.1). The second type of 119 

methods estimates Rn by calculating the individual components in Eq.(1) separately, 120 

where each component is estimated empirically or physically (Allen et al., 2011). The 121 

first type of methods is used more widely, while the second one often generates 122 

hybrid models with mixed empirical and physical sub-models. 123 

 124 

Many of these empirical models were developed based on observational data from 125 

specific locations. Thus, evaluating their performance in various environmental 126 

conditions is a critical issue. Several studies have been conducted to evaluate the 127 

performance of various empirical Rn estimation methods. Iziomon et al. (2000) 128 

compared four types of regression models in three sites at different altitudes in the 129 



southern Upper Rhine valley between Germany and Switzerland, and defined a model 130 

as a “basic regression model” where Rn was only related to Rsi. The limitations 131 

associated with basic regression models were identified and improvements were 132 

suggested such as incorporating a clearness index for characterizing the effects of 133 

clouds on both shortwave and longwave radiation and air temperature for better 134 

estimation of longwave radiation (see equations (4) and (6) below). Alados et al. 135 

(2003) also compared the basic regression model with a model that was modified by 136 

including albedo and seasonal information for a period of 38 months at a semi-arid 137 

region site in Southeastern Spain. They concluded that seasonal information yielded 138 

significant improvements for a semi-arid shrubland, but only slight improvements 139 

were obtained by incorporating albedo information. Kjaersgaard et al. (2007) tested 140 

six commonly used empirical models, including basic regression, multivariate 141 

regression, and hybrid models coupled to physical Stefan-Boltzmann relationships, at 142 

two independent temperate sites in Denmark for 32 and 7 years. Kjaersgaard et al. 143 

(2009) focused mainly on comparisons of three net longwave radiation 144 

parameterization models under two climate regimes in Denmark and Spain 145 

respectively. Kjaersgaard et al. (2007) showed that various regression models that rely 146 

on the local calibration of model coefficients should be derived from a time series that 147 

comprises at least 5 years of data, and they also showed that physically-based models 148 

are more suitable. They concluded that the performance of these models is generally 149 

best in the summertime and worst in the wintertime. Better performance in the 150 



summertime and worse performance in the wintertime for various radiation 151 

parameterization schemes, both the physical and empirical, are due to the higher 152 

signal-to-noise ratio (STNR) for higher magnitudes of radiation in the summertime 153 

but lower STNR for lower magnitudes of radiation in the wintertime. Similarly, 154 

Sentelhas and Gillespie(2008) evaluated four types of models to estimate the hourly 155 

Rn at a grass site in mid-latitudes in Canada for a 58-day period during the growing 156 

season in 2003. These models were based on different combinations of Rsi, 157 

meteorological variables (air temperature and relative humidity), and cloud cover 158 

information. The results showed that these models performed well and they were 159 

generally able to obtain similar hourly Rn values as measured, but they performed 160 

better in clear sky conditions rather than overcast conditions, and the incorporation of 161 

cloud information did not seem to significantly improve these estimates of Rn. The 162 

reason for better performances of these models in clear sky conditions is exactly the 163 

same as in the summertime because of the higher STNR of the radiation 164 

measurements. 165 

 166 

Most previous studies have evaluated empirical Rn estimation methods in different 167 

environmental conditions as described above, but they still have several limitations. 168 

The number of Rn validation sites used in early works was in fact typically less than 169 

five, which means that the land cover and climatic conditions encompassed were 170 

limited, so that the conclusions of these studies are not suitable to be adopted 171 



universally. Also, since long-term time series of radiation measurements are not easy 172 

to collect, most studies focused on a short-term period. Several studies have suggested 173 

that at least 5-year observations are needed for fitting empirical models (Kjaersgaard 174 

et al., 2007; Wang and Liang, 2009a). This may be one of the reasons why the 175 

performance of the same model varied greatly among studies. Another important 176 

limitation of these empirical approaches is that they do not accommodate terrain 177 

effects on incoming solar radiation. This simplification could result in significant 178 

errors over mountainous areas where aspect, slope, and elevation can greatly 179 

determine the globe incoming solar radiation and consequently net radiation for 180 

applications associated with ET estimation, ecosystem and climate modeling (Gao et 181 

al., 2008; Long et al., 2010; Wu et al., 2006). Finally, new empirical models that use 182 

shortwave radiation developed recently have not been evaluated and compared with 183 

other models.  184 

 185 

The objective of this study is to identify the most robust empirical models for 186 

estimating daytime (defined as the time period between sunrise and sunset) Rn  from 187 

incident and/or net shortwave radiation and other meteorological variables that are 188 

suitable to be used at global scale. The strategy to achieve this objective is to collect 189 

the most comprehensive and representative ground measurements data sets across the 190 

world to test all available empirical models. In this study, observed radiation data 191 

were obtained from 326 sites, and were collected around the world since the 1990s 192 



from 12 observing networks. Based on these evaluations, we propose a new empirical 193 

model for estimating the daytime Rn. 194 

 195 

The remainder of this paper is organized as follows. The different models are 196 

introduced in Section 2. Section 2 also describes the site information, remotely sensed 197 

and re-analysis data, and the data processing procedure. The results of the analyses 198 

and discussions are presented in Section 3. A Summary is given in Sections4. 199 

2. Methodology and data 200 

2.1 Methodology 201 

2.1.1Overview of the empirical models  202 

We present seven types of empirical models and their common feature is that the Rn is 203 

estimated linearly from the incoming shortwave radiation. 204 

 205 

Model 1 (mod1) is the simplest: 206 

11 bRaR sin +=                            (2) 207 

where a1 and b1 are coefficients. The main advantage of mod1 is its simplicity since 208 

its only requirement is the incoming shortwave radiation. However, mod1 does not 209 

correct for the net longwave radiation or for the seasonal changes in surface albedo 210 

(Kjaersgaard et al., 2007 1213).  211 



 212 

Model 2 (mod2) is very similar to mod1 but it uses net shortwave radiation instead. 213 

The implicit inclusion of albedo was first introduced by Kaminsky and 214 

Dubayah(1997): 215 

2222 )1( bRabRaR sinsn +−=+= α                  (3) 216 

where a2 and b2 are coefficients. The authors concluded that the use of net shortwave 217 

radiation can make the model almost independent of the cloud cover, time of day, or 218 

day of year.  219 

 220 

To take into account the impacts of clouds, Iziomon et al. (2000) found that the 221 

inclusion of a clearness index (
se

si

R
R

CI = ) can improve the daytime Rn estimation: 222 

333 cCIbRaR sin ++=                          
(4) 223 

where a3, b3, and c3 are coefficients, CI is the clearness index (dimensionless), and Rse 224 

is the extra-terrestrial irradiance, which is calculated as follows(Irmak et al., 2003): 225 
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where Gsc is the solar constant (0.0820 12
min

−− ⋅MJm ), dr is the inverse relative 227 

distance from the Earth to the Sun, ωs is the sunset hour angle (rad), φ is the latitude 228 



(rad), δ is the solar declination (rad), and DOY is the day of the year. This model is 229 

defined as mod3 in this study. 230 

 231 

Iziomon et al. (2000) also found that surface air temperature affects the estimation of 232 

longwave radiation and eventually net radiation, and this model is defined as mod4: 233 

4

4

,44 )1( cTbRaR Kasin ++−= σα                   (6) 234 

where Ta,K is the absolute air temperature, σ =Stefan-Boltzmann constant 235 

( 248
1067.5

−−−× mWK ), and a4, b4, and c4 are coefficients. Surface air temperature 236 

determines downward longwave radiation of the atmosphere, and also is a proxy of 237 

surface skin temperature that largely determines surface upwelling longwave radiation, 238 

The authors found out that mod4 performed better monthly than hourly. 239 

 240 

Irmak et al. (2003) also linked Rn to a set of meteorological variables. However, 241 

Kjaersgaard et al. (2007) showed that some variables (i.e., the daily maximum and 242 

minimum air temperatures) are inter-correlated, which may cause multicollinearity 243 

and make the prediction model less stable. Therefore, the regression model proposed 244 

by Irmak et al.(2003) was modified by Kjaersgaard et al.(2007), and this model is 245 

defined as mod5 as follows:     246 

55,55 ddcTbRaR rCasin +++= °                
  (7) 247 

Where CaT °,  is the mean air temperature (°C), dr is the inverse relative Earth-Sun 248 

distance defined in Eq. (5), and a5, b5,, c5, and d5 are coefficients. Kjaersgaard et 249 



al.(2007) concluded that mod5 tended to overestimate Rn slightly in some seasons but 250 

it still performed better than the original model proposed by (Irmak et al., 2003). 251 

 252 

Holtslag and Van Ulden(1983) proposed a relationship between the shortwave net 253 

radiation, surface air temperature and cloud cover: 254 

3
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 (8) 255 

where D1=
6213

1031.5
−−− ⋅× KWm  is an empirical constant suggested by 

256 

Swinbank(1963), N is the total cloud cover fraction, Ta,K is mean daily absolute air 
257 

temperature (K), D2 and D3 are also empirical constants, and D3 denotes the heating 
258 

coefficient for the surface. The authors treated the term 
6

,1 KaTD  as the theoretical 
259 

incoming longwave radiation and 
4

,KaTσ as the theoretical outgoing longwave 
260 

radiation. Thus, 
4

,

6

,1)1( KaKasi TTDR σα −+− represents the theoretical net radiation, 
261 

while all the other terms are used to correct the theoretical net radiation to the actual 
262 

net radiation. Cloud data were not easy to collect, so we used CIN −=1 instead in the 
263 

present study. D2 and D3 have been derived by Al-Riahi et al.(2003) using locally 
264 

collected data. Therefore, we modified the original model as follows and defined it as 
265 

mod6: 
266 

76

4

,

6

,16 ])1([ cCIbTTDRaR KaKasin ++−+−= σα           (9) 
267 

where a6, b6, and c7 are coefficients. Al-Riahi et al.(2003) validated the original model 268 

(Eq. (8)) in an area of Baghdad that was covered by grass and found that the model 269 

performance was best under clear sky conditions (R2> 0.99 in summer). 270 



 271 

Although mod6 incorporates the influence of clouds, the impact of the land surface is 272 

not considered. Learning from the study of Wang and Liang(2009a) (see also equation 273 

(11)), the normalized difference vegetation index (NDVI) could be a good indicator to 274 

represent the land surface in Rn estimation. Therefore, we improved mod6 by 275 

incorporating the remotely sensed NDVI and relative humidity (RH%) after multiple 276 

trial experiments, and we denote this model as “modnew”: 277 
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newKaKasinew
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σα

           
(10) 278 

where anew, bnew, cnew, dnew, and enew are coefficients, and the other variables are the 279 

same as those used in mod6. 280 

 281 

Wang and Liang (2009a) developed a multivariate linear regression model based on 282 

solar shortwave radiation and conventional meteorological observations and satellite 283 

retrievals (NDVI and albedo), as follows: 284 

min, , %(1 )( )n si C a CR R a bT cDT dNDVI eRHα ° °= − + + + +
       

(11) 285 

where Tmin,℃ is the daily minimum air temperature and ,a CDT ° is the daily diurnal air 286 

temperature range. It was found that this model could readily generate a large bias, so 287 

a constant term was added in this study. To ensure consistency, this model (mod7) is 288 

expressed as follows: 289 

7 7 min, 7 , 7 7 % 7(1 )( )n si C a CR R a b T c DT d NDVI e RH fα ° °= − + + + + +     (12)
 290 

where a7, b7, c7, d7, e7, and f7 are coefficients. To incorporate the contribution of 291 



elevation, Tmin,℃ is corrected for sea level by decreasing the temperature by 6.5°C for 292 

each 1-km increase in elevation (Wang and Liang, 2009a). This model is the first to 293 

consider surface elevation. After validation using measurements at 24 sites worldwide, 294 

it was demonstrated that the original model (Eq. (11)) provided good estimates of the 295 

daytime Rn for all sky conditions with bias varying from 27.8 to 9.7 W m-2 (63% in 296 

relative value) for different sites, and RMSE from 12.8 to 21Wm-2 (from 15% to 19% 297 

in relative value) for different sites, and an average of 16.9 W m-2 (16% relative) for 298 

all sites. 299 

 300 

Many studies have discussed whether the estimates of Rn can be improved by 301 

incorporating surface albedo in the empirical models, but no consensus has been 302 

reached. To better understand the effect of albedo, the models with Rns or Rsi 303 

(mod3–mod7) were modified by replacement with Rsi, or Rns (by setting albedo equal 304 

to 0 or not) respectively. Because mod2 is the modified mod1, therefore, seven 305 

original linear regression models (mod1–mod7) and five modified models 306 

(mod3’–mod7’) were evaluated in the present study. 307 

2.1.2 Cross-validation procedure for model evaluation 308 

Rn estimation methods studied here were evaluated based on a leave-one-out 309 

cross-validation procedure. The observations from one site were used for validation 310 

and the observations from all other sites we used for model fitting. The procedure was 311 

repeated and the statistics of the validation results were compiled. Three measures 312 



were used to characterize the model performance: R2, root mean squared error 313 

(RMSE), and bias. In general, all three measures were examined to evaluate the 314 

performance of various models, but RMSE values were given larger weighs. 315 

2.2Data 316 

The data used in this study comprised the in-situ radiation measurements, remote 317 

sensing products, and meteorological reanalysis data. The remote sensing products 318 

and reanalysis data were used to map net radiation on a global scale. After multiple 319 

trial experiments, no significant differences in estimated Rn with the eight models by 320 

using daily or daytime meteorological data was found. Therefore, after pre-processing 321 

with strict quality control, all of these data were aggregated to a daily scale except 322 

radiation measurements which were aggregated to a daytime scale. Further details of 323 

these data are given below.  324 

2.2.1In-situradiation observations 325 

(1)Measurement networks 326 

The observed net radiation data were collected from 326 sites in 12 global 327 

measurement networks, as shown in Fig.1. These sites are distributed across the globe 328 

and represent different climatic and ecosystem conditions, which range from the 329 

Arctic to the Antarctic. Some two thirds of these sites may be ascribed to the La 330 

Thuile dataset of the FLUXNET network. Table 1 provides more information on each 331 

network. 332 



 333 

The land cover types at these sites, as defined by the International 334 

Geosphere-Biosphere Programme (IGBP), included evergreen broadleaf forest, 335 

evergreen needle-leaf forest, deciduous broadleaf forest, deciduous needle-leaf forest, 336 

mixed forest, cropland, grassland, savanna, ice, barren or sparse vegetation, wetland 337 

and shrubland (Table 2). The elevations of these sites ranged from -0.7m to 5063m 338 

above sea level. This comprehensive representation of land cover types, widespread 339 

spatial distribution, and different elevations ensured that the global applicability of the 340 

models was assessed.  341 

Note that some of these locations where observations of net radiation were made 342 

did not have associated meteorological measurements like air temperature, wind, etc., 343 

so that model reanalysis was needed for these variables. 344 

(2) Daytime radiation pre-processing 345 

The radiation measurements came from different observation networks, so various 346 

pre-processing procedures were required. It is noteworthy that the La Thuile dataset is 347 

temporally continuous because its missing data have been filled using a time-filling 348 

methods (Falge et al., 2001). However, other datasets have not been filled in this study. 349 

The observation times for each site have been transformed into the solar time for 350 

consistency, and then the radiation observations (Rn and Rsi) were aggregated into the 351 

daytime mean values. The “daytime” in this study is defined as the time period 352 



between sunrise and sunset, so the sunrise and sunset times for each site should be 353 

determined firstly according to  Doggett et al.(1978). After that, the daytime 354 

radiation values were calculated by averaging all the observations between sunrise 355 

and sunset for each site. To ensure quality control, the daytime values were only 356 

calculated if at least one observation was available in each single hour during daytime 357 

hours. Finally, all of the daytime values were checked manually, and any 358 

unreasonable values were removed.  359 

       

 360 

Note that the methods proposed by Doggett et al. (1978) for estimating the sunrise 361 

and sunset times does not account for the effect of terrain on solar radiation, which 362 

may limit its applications over complex terrain. 363 

2.2.2 Satellite products 364 

Land surface changes can be characterized by the long time series NDVI and 365 

surface albedo, so two satellite products (NDVI and surface albedo) were used in this 366 

study to explore the effects of land surface characteristics on the surface net radiation 367 

estimates. To match the long term period of the radiation measurements, the 368 

bi-weekly 8-km NDVI products from 1982-2010 derived from the Advanced High 369 

Resolution Radiometer (AVHRR) data on the National Oceanic and Atmospheric 370 

Administration (NOAA) polar-orbiting satellite by the NASA Global Inventory 371 

Monitoring and Modeling Studies (GIMMS) (Tucker et al., 2005) and the 8-day  372 

0.05º spatial resolution albedo products from 1982-2010 extracted from the Global 373 



Land Surface Satellite (GLASS) datasets were used in this study. The AVHRR 374 

GIMMS NDVI product has been used widely (Jiang and Liang, 2013; Zhang et al., 375 

2013), and the GLASS albedo product has been demonstrated to be more accurate 376 

than other products(Liang et al., 2013a; Liang et al., 2013c; Liu et al., 2013a; Qu et al., 377 

2014). The NDVI and albedo time series data were extracted for each site. 378 

For all these models discussed in Section 2.111, ground measured incident 379 

shortwave radiation data (
si

R ) and the corresponding satellite albedo product  (α ) 380 

for calculating Rns were used in this study. However, satellite products will need to be 381 

used when applying these models to map net radiation at the global scale, which is 382 

one of the objectives in the phase-II GLASS project. GLASS shortwave radiation 383 

product (
si

R ) has 5km and 3h resolutions currently only from 2008-2010 (Liang et al., 384 

2013a; Liang et al., 2013c; Zhang et al., 2014), but it is being extended to cover 385 

multiple years.  386 

2.2.3 Reanalysis data 387 

Meteorological reanalysis data were used for global mapping in the present study 388 

because of the limited coverage of the field meteorological observation networks. We 389 

used NASA Modern Era Retrospective-Analysis for Research and Applications 390 

(MERRA) data (Rienecker et al., 2011). Multiple meteorological variables, including 391 

maximum air temperature (Tmax, °C), minimum air temperature (Tmin, °C), mean air 392 

temperature (Ta, °C), diurnal temperature range (DT, °C), wind speed (W, m/s), and 393 

surface air pressure (PS, pa), were first extracted for each site from 1982–2010, and 394 



the hourly MERRA data were then aggregated to obtain daily values. The relative 395 

humidity (RH%) cannot be extracted from MERRA directly, so it was calculated from 396 

other MERRA quantities (http://www.cactus2000.de/uk/unit/masshum.shtml): 397 

)))))1000/(((((
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where PSpa is the surface air pressure, and qvkg/kg is the specific humidity from 399 

MERRA. drym and ohm
2

 are the molar mass of dry air and water, and they were 400 

defined as 28.9644 g/mol and 18.01534 g/mol respectively. The denominator is used 401 

for vapor pressure of water calculation (Lowe and Ficke, 1974). The other constants 402 

are defined as: 
0

a = 6.107799961, 
1

a = 0.443651, 
2

a = 1.4289×10-2, 
3

a = 2.65×403 

10-4, 
4

a = 3.03×10-6, 
5

a = 2.03×10-8, and
6

a = 6.1368×10-8. 404 

 405 

3. Results and discussion 406 

After pre-processing, 414,540 observations were used from 326 sites during 407 

1992–2010.The models were fitted with these observations in two cases. In case 1, the 408 

models were fitted using all the observations, i.e., global models. In case 2, the 409 

observations were divided into several subsets based on their surface characteristics 410 

(see Section 3.1.2) and the models obtained are referred to as conditional models.  411 



3.1 Model evaluation results 412 

3.1.1 Global model 413 

The performances of all the empirical models based on the cross-validations are 414 

shown in Table 3. The results show that including the surface albedo generally 415 

produced better fitting results. For example, the regression statistics of mod3 was 416 

improved, where R2 increased from 0.823 to 0.888, RMSE decreased from 52.895 to 417 

42.005Wm-2, and bias changed from –0.069 to 0.019Wm-2 when Rsi was replaced with 418 

Rns. Similar improvements were obtained with mod5. However, the fitting accuracy 419 

declined when Rns was replaced with Rsi in mod4, mod6, mod7 and modnew. Among 420 

all the models, modnew and mod7 had the best performance, followed by mod4 and 421 

mod6. The modified models mod3’ and mod5’ performed as well as mod4 and mod6.  422 

In Fig. 2 three measures of the fitting statistics (R2, RMSE, and bias) are 423 

compared, where only the best for each model was selected (mod1, mod2, mod3’, 424 

mod4, mod5’, mod6, mod7, and modnew). Note that all of the models selected 425 

included Rns. Mod7 and modnew yielded higher R2 values, lower RMSE, and almost 426 

zero bias. The other models delivered similar Rn fitting performance. 427 

The coefficients of the eight global models (mod1–modnew) using all of the 428 

observations from 326 sites are shown in Table4. All of the dependent variables were 429 

significant (p<0.05). Only the best model in each case is shown in this table. 430 

To better understand the differences in our results compared with previous studies, 431 



the original coefficients of some published models are shown in Table5, as well as 432 

their fitting statistics using all of the measurements in the present study. Although 433 

many studies employed calibrated model coefficients, some coefficients could not be 434 

used for comparison in the present study due to the different time scales employed 435 

(daily/monthly), thus only five models were selected. As earlier, only the best variants 436 

for each model are shown here, where mod1, mod2, mod4, and the revised mod3 437 

(mod3’–containing Rns) and mod7 (containing the bias term) were compared with the 438 

original published models. Note that the coefficients for Linacre (1992) and Iziomon 439 

et al. (2000) in Table 5 are the median coefficients from 19 sites and three sites in 440 

their studies respectively. In general, the coefficients of mod1 and mod2 were similar 441 

in different studies, but the model bias became smaller when more sites were used for 442 

fitting. For mod3, the coefficients differed considerably because Rns was used in our 443 

study and it is obvious that the model fitting accuracy was improved significantly by 444 

using mod3’, with the RMSE of 41.81 and the bias of -0.003 Wm-2. The coefficients 445 

were also different for mod4 and the model-data mismatch was worse than that 446 

obtained using the original model. For mod7, the coefficients were  different due to 447 

the addition of the bias term, although the bias decreased near zero  using the new 448 

model. Therefore, the comparative results indicate the importance of using 449 

comprehensive measurements when fitting empirical models.  450 

3.1.2 Conditional model 451 

In the global model, the models had fixed coefficients for all land surfaces. Most 452 



previous studies focused on a small region or on a few sites, thus they were unable to 453 

discuss the effects of land surface on the net radiation. By contrast, the extensive 454 

observations used in the present study were collected globally (Fig.1), so it was 455 

possible for us to explore the conditional mode, i.e., fitting models in specific 456 

conditions.  457 

After multiple trial experiments, we found that the relationships between Rsi and 458 

Rn differed with various combinations of surface NDVI and albedo. The models tested 459 

in our study were all based on the relationship between Rn and shortwave radiation, so 460 

we divided the entire dataset into the subsets based on the NDVI and albedo according 461 

to the different relationships between Rsi and Rn, as shown in Fig.3. Fig. 3a and 3c 462 

show the scatter plots for Rsi and Rn with different NDVI values and their 463 

corresponding albedo histograms (Fig. 3b and 3d). An NDVI threshold of 0.2 was 464 

selected to identify vegetated surfaces that have similar albedo values. When 465 

NDVI<0.2 (no vegetation, Fig.3a), the non-vegetated surfaces  (Fig.3b) were 466 

categorized into three classes: albedo≤0.25, 0.25<albedo<0.7, and albedo≥0.7, and 467 

Fig.4shows that the relationships between Rsi and Rn differed considerably among the 468 

three classes. However, the relation between Rsi and Rn (Fig.3c) was similar with 469 

vegetated surfaces (NDVI≥0.2). Thus, four categories were identified, as shown in 470 

Table 6. 471 

Table 6 shows the four classification criteria and the corresponding numbers of 472 

observations for the conditional models. For simplicity, we denote the four categories 473 



as S1 (NDVI<0.2 and albedo≤0.25), S2 (NDVI<0.2 and 0.25<albedo<0.7), S3 474 

(NDVI<0.2 and albedo ≥ 0.7), and S4 (NDVI ≥ 0.2). These four categories 475 

corresponded to some of  the major land cover types found on the Earth. For 476 

example, S1 can represent wetland, S2 represents desert or barren land with sparse 477 

vegetation, S3 represents snow/ice, and S4 represents the remaining vegetation 478 

surface types. Furthermore, the seasonal information can also be represented by these 479 

categories. In the following, the performances of the eight net radiation estimation 480 

models are discussed with the four individual categories. 481 

Similar to the global model evaluation, the performance of these models and those 482 

modified by replacing Rsi (Rsn) with Rsn (Rsi) were also compared based on these four 483 

categories. To eliminate the effects of NDVI values in S1–S3, the NDVI values were 484 

set to 0. For simplicity, only the best fitting result was selected for each model for 485 

comparison, and the final model selection results are shown in Table 7, which shows 486 

that the fitting accuracy was improved  by incorporating albedo for most of the 487 

categories and empirical models, except mod7 and modnew for S1. 488 

Fig. 5 shows the comparative results for all models with the different categories. 489 

For class S1, modnew’ yielded the best performance, followed by mod2 and mod3’ 490 

with similar performances levels, and mod7’ had the highest bias, although R2 (0.775) 491 

and RMSE (55.415 Wm-2) were good. For class S2, mod2, mod3’, mod6, and modnew 492 

yielded similar regression accuracy, although mod3’ was the best, whereas mod7 only 493 



performed better than mod1, which had the poorest performance. However, the 494 

overall fitting accuracies for S2 were not as good as those for S1 and S4, which 495 

indicates that the use of incoming shortwave radiation for -estimating Rn is more 496 

suitable for non-vegetated surfaces with low albedo or other ordinary land surface 497 

types. Compared with the other categories, S3 was very different because there was 498 

nonlinear relationship between Rsi and Rn (Fig. 4). Nearly all of these models had 499 

similar performance. The average R2 was only around 0.1, but the RMSE values were 500 

very small compared to those in other cases and the biases were nearly zero. Keep in 501 

mind that net radiation of snow/ice surfaces is relatively small because of high albedo. 502 

The comparison showed that mod2 yielded the best performance for S3. Modnew was 503 

the model with the best performance for S4.  504 

Overall, several conclusions can be made based on these results: (1) the new 505 

model modnew that was developed in the present study had the best performance and 506 

it was very stable with the four categories; (2) unlike other models, the fitting results 507 

could not be improved by introducing albedo in mod7 and modnew for class S1 (see 508 

Table 7); (3) mod1only used Rsi and it yielded the worst performance in general.    509 

   In summary, all  empirical net radiation fitting models that included shortwave 510 

radiation could be used for net radiation estimation in most situations because their 511 

fitting accuracy was acceptable despite some differences from each other. In particular, 512 

net radiation is difficult to estimate over a surface that has no vegetation or sparse 513 

vegetation and high albedo, thus the physically-based or longwave radiation 514 



parameterization models or non-linear models should be considered in this case.   515 

3.2 Discussions 516 

Previous studies of net radiation estimation models have assessed the impacts of 517 

surface albedo, air temperature, and surface elevation, but their conclusions are 518 

inconsistent and not comprehensive. In the present study, we tested these models 519 

simply by studying the relationships between the measured and simulated Rn, as well 520 

as related factors (e.g., surface albedo, NDVI, air temperature), for each model in 521 

every category (S1, S2, S3, S4 and global). Due to unavailability of cloud data, the 522 

clearness index (CI) was used instead. We observed that the relationships between the 523 

fitting errors and other factors were very similar for all models in each category, 524 

where the daily air mean/minimum temperature, wind speed and CI were the most 525 

sensitive factors during net radiation estimation. We consider modnew as an example. 526 

   Fig. 6a-e show the relationships between the net radiation fitting errors and the 527 

daily air mean temperature. In general, the fitting errors were greater with higher air 528 

temperature, except for classS1. Higher air temperature may correspond to a hotter 529 

season (summer), near noon local time, or low latitude, which generally have larger 530 

incident shortwave radiation and therefore net radiation. Thus, it is reasonable to have 531 

larger absolutely errors. Besides, higher air temperature also leads to larger longwave 532 

radiation. 533 

For wind speed (Fig. 6f-j), the fitting errors were greater with smaller wind speeds, 534 

except for class S1. Weaker wind may indicate warmer air and larger incident 535 



shortwave radiation and longwave radiation. Their relative errors may not display the 536 

similar trends. 537 

The influence of cloud was very similar for all categories. Fig. 6k-o show that the 538 

fitting errors were smaller when the sky was overcast, which is consistent with the 539 

previous findings (Alados et al., 2003; Kaminsky and Dubayah, 1997). It may be also 540 

explained by the reduced absolute magnitude of incident solar radiation under cloudy 541 

conditions. 542 

We also studied the effects of elevation on net radiation estimation. The air 543 

temperature is usually scaled by elevation in the models, but we found that scaling the 544 

air temperature by elevation did not make much difference. 545 

   Therefore, the effects of air temperature and cloud may consider to be 546 

incorporated into the estimation models in future research because satellite remote 547 

sensing is capable of producing accurate products of air temperature and cloud 548 

coverage. Although wind cannot be accurately retrieved over land surfaces from 549 

satellite data, if our speculations discussed above are right, wind effects can be 550 

addressed if models incorporate the information of air temperature and cloud 551 

coverage. 552 

4. Summary 553 

Due to the inadequate spatial representation of field measurements, satellite 554 

remote sensing provides a practical method for mapping net radiation spatially and 555 



temporally at different scales. A practical solution is to estimate the net radiation 556 

empirically based on the incoming shortwave radiation or shortwave net radiation, 557 

which can be estimated accurately from satellite observations. To develop a robust 558 

empirical model, we collected as many comprehensive ground measurements as 559 

possible and evaluated the most commonly used empirical models. 560 

 561 

We evaluated seven daytime net radiation estimation empirical models using 562 

observations obtained from 326 independent sites during 1992–2010. These sites were 563 

distributed worldwide and they represented the major land cover types on the Earth, 564 

as well as seasonal information. The leave-one-out cross-validation method was used 565 

to derive calibration coefficients and for validation. The performances of these models 566 

were evaluated using the whole dataset (global model) or four subsets based on the 567 

surface albedo and NDVI values (conditional model). The effects of albedo, elevation, 568 

and some meteorological factors were investigated in the present study.  569 

 570 

Based on extensive evaluations and analyses of existing models, we developed a 571 

new model that performed better than the existing models in both the global and 572 

conditional models. In the global model, the RMSE of this new model was 573 

approximately 40.0 Wm-2. In the conditional mode, the new model could reduce the 574 

RMSEs to 53.92, 50.99, 18.23, and 39.01 Wm-2 for S1–S4, respectively, which were 575 

better results than those obtained using most of the other linear empirical models 576 



considered in this study. 577 

 578 

   Noting that these models evaluated in this study are linear based on the linear 579 

relationships between all-wave net radiation and incident surface shortwave radiation 580 

or surface shortwave net radiation, but the possible non-linear relations have not been 581 

considered here but presented elsewhere (Jiang et al. 2014).The global distribution of 582 

the observations used in this study is largely biased toward the boreal regions and 583 

western countries, and few urban sites were included. And also the terrain slope and 584 

orientation of these radiation measurements have not been taken into account in this 585 

study. Besides, the remotely sensed and reanalysis data used have coarser spatial 586 

resolution, and may not be the best to match the site radiation observations. All these 587 

aspects need to be addressed in the future.  588 
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Tables 785 

Table 1 Information related to the 12 observation networks 786 

Network/ 

Program 

No. of 

sites 

Time 

Period 
Instrument URL 

Global 

Fluxnet (La 

Thuile 

dataset) 

207 1991-2008 
Kipp&ZonenCNR-1, 

etc. 
http://www.fluxdata.org/ 

AsiaFlux 19 1999-2008 Kipp&Zonen CNR-1 http://www.asiaflux.net/ 

ARM 22 2002-2013 Kipp&Zonen CNR-1 https://www.arm.gov/ 

BSRN 6 1992-2012 

Eppley, 

PIR/Kipp&Zonen 

CG4 

http://www.bsrn.awi.de/ 

SURFRAD 7 1995-2012 Eppley, PIR 
http://www.esrl.noaa.gov/gmd/gr

ad/surfrad/ 

GAME/AA

N 
10 1997-2003 EKO MS0202F 

http://aan.suiri.tsukuba.ac.jp/aan.

html 

BOREAS  5 1993-1996 Kipp&Zonen CM-5  
http://daac.ornl.gov/BOREAS/bh

s/BOREAS_Home.html 

GC-Net 13 1995-2012 
Li Cor Photodiode & 

REBS Q* 7 

http://cires.colorado.edu/science/

groups/steffen/gcnet/ 

CEOP-GE

WEX 
37 2002-2009 

Eppley, 

PIR/Kipp&Zonen 

CG4 

http://www.eol.ucar.edu/projects/

ceop/ 

CEOP 10 2007-2009 

SMOSREX 1 2005-2010 
Kipp&Zonen 

CNR-1 

http://www.cesbio.ups-tlse.fr/us/s

mos/smos_lewis.html 

CERN 1 2007  http://www.cerndata.ac.cn/ 

ARM: Atmospheric Radiation Measurement, BSRN: Baseline Surface Radiation Network(Ohmura et al., 1998), 787 

SURFRAD: Surface Radiation Network(Augustine et al., 2000; Augustine et al., 2005), BOREAS: Boreal 788 

Ecosystem-Atmosphere Study, GC-Net: Greenland Climate Network(Steffen et al., 1996), CEOP-GEWEX: 789 

Coordinated Enhanced Observing Period, CEOP: Coordinated Enhanced Observation Network of China (Jia et al., 790 

2012; Liu et al., 2011; Liu et al., 2013b; Xu et al., 2013), SMOSREX: Surface Monitoring Of Soil Reservoir 791 

Experiment(de Rosnay et al., 2006), CERN: Chinese Ecosystem Research Network. 792 

 793 

 794 



Table 2 Number of sites for each IGBP land cover type 795 

IGBP Land Cover Types No. of sites 

Barren& Sparse vegetation 6 

Cropland 50 

Deciduous Broadleaf Forest  35 

Deciduous Needleleaf Forest 6 

Evergreen Broadleaf Forest  17 

Evergreen Needleleaf Forest  68 

Grassland 70 

Ice 17 

Mixed Forest 14 

Savanna 7 

Shrubland 18 

Wetland 18 

Total 326 

 796 

 797 

 798 

 799 

 800 

 801 

 802 

 803 

 804 

 805 

 806 

 807 

 808 



Table 3 Comparative fitting statistics for seven daytime net radiation estimation models. The 809 

coefficients a and b are the slope and intercept of the linear regression relationship between estimated 810 

and measured Rn.  811 

 a b 

(W m-2) 

R2 

 

RMSE 

(W m-2) 

bias 

(W m-2) 

 a b 

(W m-2) 

R2 

 

RMSE 

(W m-2) 

bias 

(W m-2) 

mod1 0.9991 0.167 0.767 60.634 -0.0003       

mod2* 0.9996 0.059 0.879 43.658 -0.016       

mod3 0.9992 0.083 0.823 52.895 -0.069 mod3’* 0.9990 0.207 0.888 42.005 0.019 

mod4* 0.9992 0.135 0.886 42.385 0.018 mod4’ 0.9989 0.098 0.827 52.361 0.1003 

mod5 0.9990 0.048 0.828 52.114 0.143 mod5’* 0.9994 0.088 0.887 42.209 -0.028 

mod6* 0.9991 0.163 0.890 41.641 0.002 mod6’ 0.9991 0.095 0.826 52.474 -0.077 

mod7* 0.9986 0.209 0.899 39.882 -0.045 mod7’ 0.9984 0.250 0.867 45.901 -0.045 

modnew 0.9987 0.183 0.899 40.025 -0.047 modnew’ 0.9992 0.044 0.859 47.276 -0.098 

’ denotes a modified model, and * denotes models that included Rns. 812 

 813 

 814 

 815 

 816 

 817 

 818 

 819 

 820 

 821 

 822 

 823 

 824 

 825 



 826 

Table 4 Coefficients for the best eight global models 827 

Model Coefficients 

mod1 
a1 b1 

0.654 -20.317 

mod2* 
a2 b2 

0.781 -13.596 

mod3’* 
a3 b3 c3 

0.867 -81.483 6.310 

mod4* 
a4 b4 c4 

0.724 0.211 -77.253 

mod5’* 
a5 b5 c5 d5 

0.721 0.777 -301.420 296.842 

mod6* 
a6 b6 c6 

0.863 -90.491 87.219 

mod7* 
a7 b7 c7 d7 e7 f7 

0.5515 0.0027 0.0015 0.1321 0.1652 -10.7575 

modnew* 
anew bnew cnew dnew enew 

0.862 -65.435 24.564 54.351 20.966 

’ denotes a modified model, and * denotes models that included Rns. 828 

 829 

 830 

 831 

 832 

 833 

 834 



 835 

Table 5 Comparisons of the coefficients and performance using mod1, mod2, mod3, mod4, and mod7 in 836 

the present study and the original published reports. 837 

 

Coefficients 

Model comparison 

R2 RMSE 

(Wm-2) 

bias 

(Wm-2) 

mod1 

a1 b1     

0.767 60.425 -0.0097 

0.654 -20.317     

Linacre 

(1992) 

0.63 -23     

0.769 60.425 -10.118 

Iziomon et al. 

(2000) 

0.63 -25.7     

0.769 60.425 -12.818 

mod2 

a2 b2     

0.880 43.511 0.001 

0.781 -13.596     

Iziomonet al. 

(2000) 

0.80 -24.5     

0.880 43.511 -6.104 

mod3’ 

a3 b3 c3    

0.889 41.810 -0.003 
0.867 -81.483 6.310 

   

Iziomon et 

al.(2000)* 

0.77 -147.5 -6 
   

0.817 53.829 -24.575 

mod4 a4 b4 c4    0.888 42.170 -0.008 



0.724 0.211 -77.253 
   

Iziomon et 

al.(2000) 

0.82 0.028 38.4    

0.882 43.200 72.230 

mod7 

a7 b7 c7 d7 e7 f7 

0.902 39.356 -0.049 

0.5515 0.0027 0.0015 0.1321 0.1652 -10.7575 

Wang and 

Liang(2009a) 

0.5129 0.0025 0.0000 0.1401 0.2604  

0.899 39.883 13.251 

* denotes the models that included Rsi, where the others included Rns. 838 

 839 

Table 6 Four classification categories based on the combination of NDVI and albedo, with their 840 

corresponding numbers of observations. 841 

Class Classification criteria No. of Observations 

S1 NDVI<0.2 and albedo≤0.25 19111 

S2 NDVI<0.2 and 0.25<albedo<0.7 17909 

S3 NDVI<0.2 and albedo≥0.7 20229 

S4 NDVI≥0.2 357291 

 842 

 843 

 844 

 845 

 846 



Table 7 Final models selected for comparison for each category. 847 

 Selected models 

S1 mod1, mod2*, mod3’*, mod4*, mod5’*, mod6*, mod7’ndvi=0, modnew’ndvi=0 

S2 mod1, mod2*, mod3’*, mod4*, mod5’*, mod6*, mod7*ndvi=0, modnew*ndvi=0 

S3 mod1, mod2*, mod3’*, mod4*, mod5’*, mod6*, mod7*ndvi=0, modnew*ndvi=0 

S4 mod1, mod2*, mod3’*, mod4*, mod5’*, mod6*, mod7*, modnew* 

’ denotes a modified model, and * denotes the models that included Rns. 848 

Figure Caption 849 

Figure 1 Distribution of 326 observation sites in 12 measurement networks. 850 

 851 

 852 

Figure 2 Comparisons of the fitting statistics for the eight selected models (mod1, 853 

mod2, mod3’, mod4, mod5’, mod6, mod7, and modnew) using three measures: (a) R2, 854 

(b) RMSE (Wm-2), (c) bias (Wm-2). 855 

 856 

 857 

Figure 3 Scatter plots for Rn and Rsi (a, c), and their corresponding histograms of 858 

albedo (b, d) when NDVI<0.2 and NDVI≥0.2.  859 

 860 

 861 

Figure 4 The scatter plot for Rn and Rsi when classified by albedo whenever 862 

NDVI<0.2. 863 

 864 

 865 



Figure 5 Comparison of the fitting accuracies (R2, RMSE, bias) for eight selected 866 

models with four categories: (a)-(c) S1, (d)-(f) S2, (g)-(i) S3, and (j)-(l) S4. 867 

 868 

 869 

Figure 6 Scatter plots showing the differences between the measured and model 870 

calculated Rn and related factors for each model in the five categories (S1, S2, S3, S4 871 

and global): (a)-(e) daily mean air temperature (T), (f)-(j) daily mean wind speed (W), 872 

and (k)-(o) clearness index (CI). Positive values mean that the model underestimated 873 

net radiation. 874 

 875 

 876 
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