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A B S T R A C T

Surface all-wave net radiation (Rn) plays an important role in various land surface processes, such as agri-
cultural, ecological, hydrological, and biogeochemical processes. Recently, remote sensing of Rn at regional and
global scales has attracted considerable attention and has achieved significant advances. However, there are
many issues in estimating all-sky daily average Rn at high latitudes, such as posing greater uncertainty by surface
and atmosphere satellite products at high latitudes, and unavailability of real-time and accurate cloud base
height and temperature parameters. In this study, we developed the LRD (length ratio of daytime) classification
model using the genetic algorithm-artificial neural network (GA-ANN) to estimate all-sky daily average Rn at
high latitudes. With a very high temporal repeating frequency (~6 to 20 times per day) at high latitudes, data
from the Moderate Resolution Imaging Spectroradiometer (MODIS) were used to test the proposed method. Rn

measurements at 82 sites and top-of-atmosphere (TOA) data of MODIS from 2000 to 2017 were matched for
model training and validation. Two models for estimating daily average Rn were developed: model I based on
instantaneous daytime MODIS observation and model II based on instantaneous nighttime MODIS observation.
Validation results of model I showed an R2 of 0.85, an RMSE of 23.66 W/m2, and a bias of 0.27 W/m2, whereas
these values were 0.51, 15.04 W/m2, and −0.08 W/m2 for model II, respectively. Overall, the proposed machine
learning algorithm with the LRD classification can accurately estimate the all-sky daily average Rn at high
latitudes. Mapping of Rn over the high latitudes at 1 km spatial resolution showed a similar spatial distribution to
Rn estimates from the Clouds and the Earth's Radiant Energy System (CERES) product. This method has the
potential for operational monitoring of spatio-temporal change of Rn at high latitudes with a long-term coverage
of MODIS observations.

1. Introduction

All-wave net radiation (Rn), measured at the surface, is a key vari-
able required to estimate surface energy balance (SEB) and surface
geophysical processes (Liang et al., 2019; Wild et al., 2013). SEB at the
Earth's surface is an important parameter used to characterize land
surface processes and interactions and feedback between the land and
atmosphere. Thus, it plays a crucial role in agricultural, ecological,
hydrological, and biogeochemical processes (Dickinson et al., 2006;
Kaminsky and Dubayah, 1997). Rn is the difference between the
downward and upward radiation fluxes across the entire shortwave and
longwave spectra. Rn is expressed as (Bisht et al., 2005; Liang et al.,
2019; Liang et al., 2010b):

= +R R R R Rn S S L L (1)

where are the shortwave downward, shortwave upward, longwave
downward, and longwave upward radiation fluxes, respectively.

The absorbed net radiation at natural surfaces should balance out-
going fluxes and can be expressed as (Kato and Yamaguchi, 2005):

= + +R G H LEn (2)

where G is the soil heat flux, H is the sensible heat flux, and LE is the
latent heat flux. During the daytime, soil heat is conducted into the soil
due to lower underground temperature compared to the surface. Stored
heat in the soil is released to the atmosphere by longwave radiation
overnight. Sensible heat can warm the surface and drive heat exchange
from the Earth's surface to the atmosphere. The remaining energy latent
heat controls the water cycle process including the transpiration of
vegetation and evaporation of land surface water. Specifically, the
quantification of Rn and its components have implications for
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understanding agricultural drought (Wang et al., 2007; Zhao et al.,
2013), snow melt (Miller et al., 2018; Van As, 2011; Weston et al.,
2007), urban thermal environments (Kato and Yamaguchi, 2005; Kuang
et al., 2018; Offerle et al., 2003), and water resource management
(Bastiaanssen et al., 2005; Liang et al., 2010a).

Rn can be measured accurately by ground-based instruments;
however, only spatially sparse measurements are available at the global
scale. Moreover, the necessary instruments (e.g. pyrgeometers) are re-
latively expensive and require labor for routine maintenance. Satellite
remote sensing can continuously and synoptically retrieve Rn with
better spatial and temporal coverage as well as reasonable accuracy
(Bisht and Bras, 2010; Bisht et al., 2005; Brown and Caldeira, 2017;
Huang et al., 2016; Jiang et al., 2018; Jiang et al., 2016; Jung et al.,
2019; Wang et al., 2015a). Algorithm development applied to the es-
timation of Rn at regional and global scales has attracted considerable
attention in recent years and achieved significant advances (Amatya
et al., 2015; Bisht and Bras, 2010; Jiang et al., 2015; Liang et al., 2019;
Mira et al., 2016; Moukomla and Blanken, 2016; Ramírez-Cuesta et al.,
2018; Wang et al., 2015a; Zhao et al., 2019; Zhong et al., 2019). The
algorithms widely used and validated can be divided into three classes:
1) parameterization algorithms, 2) hybrid algorithms, and 3) empirical
algorithms.

Parameterization algorithms estimate Rn using satellite high-level
products including atmospheric and surface parameters. For example,
Bisht et al. (2005) employed various Moderate Resolution Imaging
Spectroradiometer (MODIS) products to estimate the components of Rn

under clear-sky conditions and added them together to derive in-
stantaneous Rn. They derived the daytime average Rn using a sinusoidal
model to capture the daytime Rn cycle. Bisht and Bras (2010) extended
their framework to estimate the daytime average Rn under all-sky
conditions over the Southern Great Plains using additional MODIS
cloud products, where the accuracy of the model was found to reduce
under cloudy-sky conditions. Ryu et al. (2008) assessed the applic-
ability of parameterization algorithms over the heterogeneous and
rugged surface and pointed out that the scale mismatch and hetero-
geneous quality of surface land cover should be carefully considered.
Parameterization algorithms have the theoretical foundation and can
provide accurate Rn estimates with reliable inputs. For example, the
Clouds and the Earth's Radiant Energy System (CERES), which provides
useful data to investigate energy budget and global climate change
(Brown and Caldeira, 2017), applies a simple and effective para-
meterization algorithm to produce a Level 2 surface radiation product
at the footprint scale of the CERES satellite under both clear- and
cloudy- sky conditions (Gupta et al., 2004). Although this Level 2
product has higher spatial resolution, it provides instantaneous Rn es-
timates instead of daily average Rn. The Level 3 product (CERES-SYN)
provides daily average Rn with an aggregated 1° spatial resolution. Its
Rn data are estimated using Fu-Liou's radiative transfer model with the
atmospheric and surface parameters used as model inputs (Fu and Liou,
1993; Wielicki et al., 1996).

Hybrid algorithms generally include two steps: 1) a large set of top-
of-atmosphere (TOA) observations and corresponding surface Rn data-
sets, representing different surface and atmosphere conditions, is si-
mulated by a radiative transfer model, and 2) empirical relationships
between TOA reflectance or radiance and Rn are built by applying
simple statistical methods or machine learning (Wang et al., 2015a;
Wang et al., 2012). Hybrid algorithms can also be used to estimate Rn

under clear-sky conditions; however, this algorithm has limited appli-
cation under cloudy-sky conditions because real-time cloud base height
and temperature are important variables in quantifying longwave ra-
diation components (Wang et al., 2018; Zhou and Cess, 2001). Fur-
thermore, Wang et al. (2015a) found that Rn estimates as the complete
parameter had performed better than separating shortwave and long-
wave radiation parts. The main difficulty in estimating Rn is that the
estimation of longwave radiation components under cloudy-sky con-
ditions remains a challenge due to the unavailability of atmospheric

parameters below a cloud layer (Duarte et al., 2006; Wang et al., 2018;
Zhou et al., 2007).

Rn has been demonstrated to be significantly related to shortwave
radiation fluxes, except for polar regions (Alados et al., 2003; Guo and
Cheng, 2018; Hu et al., 2011; Zhou et al., 2013). Empirical algorithms
indirectly estimate Rn using the relationship between Rn, shortwave
radiation fluxes, and other auxiliary data (Alados et al., 2003; Huang
et al., 2016; Jiang et al., 2015; Zhou et al., 2013). Utilizing this theo-
retical foundation, some daytime average Rn products have been de-
veloped over land surfaces and present good overall accuracy (Jiang
et al., 2018; Jiang et al., 2016). This method was further extended to
derive daily average Rn (the sum of daytime and nighttime values), but
was found to have dissatisfactory accuracy at high latitudes (Babar
et al., 2019; Raschke et al., 2006). This is because shorter daytime
duration and polar night phenomena result in unstable Rn estimates if
one only leverages shortwave radiation to estimate Rn at high latitudes.

High latitudes are typically more sensitive to climate change related
to global warming (Brown and Caldeira, 2017; Niu et al., 2010; Van
Den Broeke et al., 2004). In recent decades, the polar ice sheets such
those as in Greenland, Alaska, and the Antarctic Peninsula land ice have
undergone massive melting events, playing a crucial role in regional
climate change and global sea level rise (Box et al., 2018; He et al.,
2013; Van As, 2011; Vaughan and Doake, 1996). Changes in Rn are one
of the driving forces that determine ice sheet mass balance. Some re-
searchers have used a limited number of radiation observation sites to
study radiation budget at high latitudes; however, the spatial and
temporal variation of Rn has not yet been fully understood (Kuipers
Munneke et al., 2018; Miller et al., 2018; Van As, 2011; van den Broeke
et al., 2008). Existing satellite products, such as CERES data, provide
daily Rn with 1° spatial resolution, which is insufficient for radiation
budget analysis over ice sheets, particularly for ablation zones. Jia et al.
(2016) undertook a comprehensive evaluation of the accuracy of the
CERES-SYN product using globally distributed ground-based measure-
ments. They concluded that the Rn estimates from the CERES-SYN
product are accurate at a global scale, this accuracy, however, is rela-
tively lower at high latitudes. As regards other products such as the
Global Energy and Water Experiment (GEWEX), International Satellite
Cloud Climatology Project (ISCCP), and the Cloud, Albedo and Radia-
tion dataset (CLARA), CERES products are superior to them in terms of
general accuracy (Gui et al., 2010; Jia et al., 2018).

To date, very few efforts have been made to remotely estimate
shortwave radiation fluxes at high latitudes (Babar et al., 2019; Babar
et al., 2020), and fewer works focus especially on Rn (Babar et al., 2019;
Gui et al., 2010; Niu et al., 2010). Of the remote sensing algorithms
mentioned above, parameterization algorithms are not applicable due
to posing greater uncertainty by surface and atmosphere satellite pro-
ducts at high latitudes (Gusain et al., 2019; Hall et al., 2018). Hybrid
algorithms have limited capability for estimating Rn under cloudy-sky
conditions due to the unavailability of real-time and accurate cloud
base height and temperature variables (Wang et al., 2018; Zhou and
Cess, 2001). In addition, large solar zenith angle (SZA) usually occurs at
high latitudes. Hybrid algorithms have larger errors when SZA is large
owing to the inherent limitations of radiative transfer simulation at
large SZA (Wang et al., 2015a). The existing algorithms with the help of
shortwave radiation fluxes have unacceptable performance with low
accuracy or retrieval failure at high latitudes (Jia et al., 2018; Raschke
et al., 2006; Wang et al., 2015a). In contrast, machine learning algo-
rithms do not need real-time and accurate surface and atmosphere
parameters; however, they have comparable performance. This method
of estimating radiation fluxes is becoming increasingly popular using
collected in situ radiation data and matched satellite observations (Deo
et al., 2019; Ghimire et al., 2018; Peng et al., 2019; Wei et al., 2019;
Ying et al., 2019; Zhou et al., 2018). Recently, Jung et al. (2019) also
estimated daily net radiation with machine learning algorithms at
0.0833-degree resolution using MODIS and at 0.5-degree resolution
using remote sensing and meteorological data. Therefore, the issues in
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Rn estimates at high latitudes motivate us to explore the availability of
machine learning algorithms to derive daily average Rn.

The MODIS is a key sensor on board the Terra and Aqua satellites,
scanning the land surface about 6–20 times daily at high latitudes.
Multiple overpasses during a day are critical for modeling diurnal
changes in Rn, with good potential to improve the accuracy of daily
average Rn estimates (Wang et al., 2015b). MODIS has a unique ad-
vantage on this issue compared to other sensors. For example, geosta-
tionary satellites do not perform suitable observations at high latitudes
due to large viewing angles, limiting their use. The main objective of
this study is to develop an operational scheme for estimating all-sky
daily average Rn with 1 km spatial resolution from MODIS data at high
latitudes. This paper is organized as follows: the data and methods for
the Rn estimation are described in Section 2, and the results are pre-
sented and discussed in Section 3. Finally, a conclusion is provided in
Section 4.

2. Data and method

Two kinds of satellite data were employed in this study; MODIS data
and CERES-SYN data. The former was used to estimate the daily
average Rn at high latitudes, while the latter was selected to compare
the daily average Rn estimates from MODIS data using the proposed
algorithm. Ground measurements from global observation networks
were also collected to train and validate the daily average Rn estimates.
A machine learning algorithm was applied to build the specific retrieval
model, and a classification model scheme constrained by the length
ratio of daytime (LRD) was employed to develop the LRD classification
model.

2.1. MODIS products

Collection 6 MODIS TOA observation data (MOD021KM and
MYD021KM) and corresponding geolocation data (MOD03 and
MYD03) from 2000 to 2017 were collected with the MODIS Level-1B
dataset. MOD021KM and MYD021KM, the Calibrated Earth View da-
taset with l km resolution, were used to derive TOA reflectance at
shortwave bands and TOA radiance at longwave bands (Toller et al.,
2009). MOD03 and MYD03 products with l km resolution were utilized
to match pairs between in situ observed Rn data and satellite TOA ob-
servations. They also provided the SZA, solar azimuth angle (SAA),
viewing zenith angle (VZA), viewing azimuth angle (VAA), and surface
elevation variables. MODIS has 36 bands including 20 visible and
shortwave infrared (VSWIR) bands as well as 16 thermal infrared
bands. Shortwave bands 8–16 are typically not used in land remote
sensing as they are designed for aquatic environment applications,
distinguished by the low threshold of saturation (Wang et al., 2015a).
In this study, considering different band combinations as independent
variables to test model performance, TOA reflectance of eight short-
wave bands (B1-B7 and B19) were selected to explain the contributions
of shortwave radiation fluxes to Rn. The water vapor absorption band,
B19, was used to account for the water vapor effect on shortwave net
radiation (Wang et al., 2015a, 2015b; Zhang et al., 2019). The TOA
radiance of 10 longwave bands (B27-B36) were used to explain the
contributions of longwave radiation fluxes to Rn that are consistent with
previous studies (Cheng and Liang, 2016; Wang et al., 2015a; Wang
et al., 2012; Wang and Liang, 2009; Wang et al., 2009; Zhou et al.,
2018). The wavelengths of the shortwave and longwave bands used in
this study are shown in Table 1.

2.2. CERES-SYN product

The CERES-SYN product has been demonstrated to be accurate at
the global scale and was employed to study the spatio-temporal change
of Rn (Brown and Caldeira, 2017; Jia et al., 2016). Rn estimates from the
CERES-SYN product are highly accurate for the mid and low latitudes;

however, its accuracy is lower for high latitudes (Jia et al., 2016; Jia
et al., 2018). The CERES-SYN Edition4 product including hourly
R , R , R , RS S L L parameters under all-sky conditions at 1° spatial resolu-
tion was used to derive daily average Rn. A previous study evaluated the
accuracy of CERES-SYN at high latitudes (Jia et al., 2016), the valida-
tion results have an RMSE of more than 33.56 W/m2 and a bias of more
than 3.43 W/m2. The low accuracy of the CERES-SYN at high latitudes
may be attributed to its coarse spatial resolution of 1° that cannot
capture land cover complexity, and the large errors in snow cover areas
(Jia et al., 2016). Although CERES-SYN shows relatively lower accuracy
at high latitudes (Jia et al., 2018), it is still an available reference
product to compare overall spatial pattern with MODIS-derived Rn es-
timates.

2.3. Ground measurements

Over the past several decades, globally distributed ground-based
radiation flux observation networks have provided continuous in situ
Rn measurements widely used in scientific research. We collected in situ
Rn measurements from 2000 to 2017 at high latitudes where the lati-
tude was greater than 60°. Rn data at 82 sites from eight observation
networks were used for model training and validation. These included
19 sites from the European Fluxes Database Cluster (EFDC), 9 sites from
FLUXNET, 17 sites from AmeriFlux, 3 sites from the Baseline Surface
Radiation Network (BSRN), 2 sites from the Coordinated Energy and
Water Cycle Observations Project (CEOP), 25 sites from the Programme
for Monitoring of the Greenland Ice Sheet (PROMICE), 4 sites from the
Institute for Marine and Atmospheric Research (IMAU), and 3 sites from
AsiaFlux. Fig. 1 shows the spatial distribution of the 82 in situ ob-
servation sites used in this study.

The EFDC was built to set up flux measurement infrastructure to
provide high quality and standard field observed data from different
ecosystems to the atmosphere. To routinely observe carbon dioxide and
water vapor exchange, regional networks in North, Central, and South
America as well as Europe, Asia, Africa, and Australia are connected to
constitute FLUXNET, the global observation network. The FLUXNET
network, distributed across most of the world's climate zones and re-
presentative biomes, contains more than 800 active and historic flux
observation sites. The AmeriFlux network, supported and maintained
by the Lawrence Berkeley National Laboratory (LBNL), began collecting
data in 1996 and grew from approximately 15 sites in 1997 to over 110
current active sites. The BSRN network is a project of the GEWEX
supported by the World Climate Research Programme (WCRP). The
BSRN aims to understand climate change resulting from significant
changes in SEB at the Earth's surface. The CEOP network has estab-
lished globally dispersed sites to monitor and predict water resources at
the local or continental scales. The regional network PROMICE, in-
cludes 25 fully automatic stations in Greenland, and is organized to
measure ice melt, climate, and ice movement and monitor the mass loss
over Greenland. The IMAU at Utrecht University has set up several
automatic weather stations (AWS) on glaciers in different locations
around the world such as Greenland, the Alps, Norway, Iceland, and
Svalbard. The mission of IMAU is to improve our understanding of the
exchange processes between ice/snow surface and atmosphere as well
as the dynamic changes of glaciers and ice sheets. AsiaFlux is a regional
observation network bringing researchers in Asia together to study the
variation of carbon dioxide, water vapor, and energy exchanges be-
tween terrestrial ecosystems and the atmosphere across various time
scales.

Note that there are some overlapping or nearby sites between net-
works. To avoid data repetition and confusion, we selected one set of
data for each site. Strict data quality control should be carefully con-
ducted prior to the aggregation of in situ Rn data to daily 24-h average
values (Jiang et al., 2015). The quality control of Rn data was per-
formed on a site-by-site basis using three steps: 1) removing raw data
records labeled with a bad quality flag, 2) checking the temporal
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continuity, and 3) manually inspecting and removing unreasonable
values. The daily average Rn values were calculated when at least one
valid observation was available for each hour during a 24-h cycle.

2.4. Genetic algorithm-artificial neural network

2.4.1. Artificial neural network
An artificial neural network (ANN) is composed of interconnections

between the input, hidden, and output layers. Its key features include
network topology, neuron characteristics, and training or learning rules
(Lippmann, 1987; Peng et al., 2019). The type of single hidden layer
ANN trained by a feed-forward back-propagation algorithm (FFBPA) is
a frequently used scheme for regression and forecasting (Ghimire et al.,
2018; Khajeh et al., 2012), where various inputs and an output are
completely connected with one hidden layer. The superiority of the
FFBPA as reflected by its lack of complexity, has similar nonlinear
prediction capabilities compared with other approaches (Han et al.,
2007). By minimizing the mean square error between the ANN output
and actual observed data, a reliable ANN is generated using a training
process to adjust the weight concerned with the transfer functions be-
tween neurons. The major challenge in building a back propagation
ANN is weight optimization, which highly influences the performance
of the ANN (Kayarvizhy et al., 2013). The back propagation ANN will
easily get trapped in a local minimum value, which may result in a
failure to obtain a global optimal solution (Ghimire et al., 2018). The
estimation of Rn by the ANN was calculated as:

= +Y f wX b( ) (3)

where Y is the estimated Rn, f is the transfer function of the hidden
layer, w is the weight, X is the input vector, and b is the neuron bias.

2.4.2. Genetic algorithm
Genetic algorithm (GA) is a global optimization method inspired by

natural selection and species population evolution mechanisms
(Holland, 1975). The basic notion of GA is that every chromosome,
corresponding to a solution of the optimization issue, determines the
degree of excellence of each generation by the predefined fitness

function. A GA is specified by five components: encoding, population
initialization, individual selection, crossover, and mutation. The GA
processing involved five steps: (1) input variables encoded in binary
(zeros and ones) were regarded as chromosomes; (2) the GA needs a set
of possible initial solutions to begin operating, and all input chromo-
somes (population) were first selected; (3) a predefined fitness function
was employed to assess whether the fitness of every chromosome met
the constraint; (4) if it is met, the output was selected as the result,
otherwise chromosomes with better fitness remained to generate off-
spring from reproduction, crossover, and mutation; (5) the fitness of
every new chromosome was assessed again. The last step was repeated
until the fitness met the predefined constraint.

2.4.3. Optimized ANN based on GA
Two parameters (w, weight; b, bias), were key factors directly de-

termining the ANN prediction model accuracy. Determining the best w
and b is an issue for ANN model optimization that needs to be ad-
dressed. GA, a typical optimization algorithm, was employed for w and
b optimization, where w and b values were equal to the best chromo-
some. After deriving the optimal parameters, the GA-ANN model was
used to estimate Rn. The main steps of GA-ANN for estimating Rn were:

(1) Splitting the dataset: the dataset was randomly divided into two
classes; 70% to train the model and 30% for model validation. All
input and output variables were normalized to the same scaling
values ranging from 0 to 1.

(2) Setting the parameters of ANN: there was no clear mathematical
equation to determine the optimal number of neurons in a hidden
layer of the ANN model; thus, the number of neurons was de-
termined through trial and error (Ghimire et al., 2018; Khajeh et al.,
2012), which was feasible and generally accepted. Neurons ranging
from 5 to 50, in increments of 5, were tested. Furthermore, the
Levenberg–Marquardt back propagation (LM), a very well suited
and generally accepted method, was employed to train the ANN
model (Khajeh et al., 2012; Saini and Soni, 2002).

(3) Setting the GA parameters: the crossover probability, mutation
probability, and number of iterations were set to 0.9, 0.3, and 10,

Table 1
The wavelengths of the shortwave and longwave bands used in this study.

Shortwave bands Longwave bands

Band No. Bandwidth (μm) Center Wavelength (μm) Band No. Bandwidth (μm) Center
Wavelength (μm)

B1 0.620–0.670 0.645 B27 6.535–6.895 6.715
B2 0.841–0.876 0.858 B28 7.175–7.475 7.325
B3 0.459–0.479 0.469 B29 8.400–8.700 8.550
B4 0.545–0.565 0.555 B30 9.580–9.880 9.730
B5 1.230–1.250 1.240 B31 10.780–11.280 11.030
B6 1.628–1.652 1.640 B32 11.770–12.270 12.020
B7 2.105–2.155 2.130 B33 13.185–13.485 13.335
B19 0.915–0.965 0.940 B34 13.485–13.785 13.635

B35 13.785–14.085 13.935
B36 14.085–14.385 14.235

Fig. 1. Spatial distribution of 82 in situ sites from eight radiation fluxes networks.
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respectively. No theoretical approach could be applied to accurately
derive optimal population size. During practical operation, an op-
timal population size of 100 was chosen based on the sensitivity test
with the defined crossover and mutation probability.

(4) Optimizing parameters w and b of ANN using the GA: individual
selection, crossover, and mutation were conducted within the ge-
netic algorithm to find the optimal w and b values.

The parameters w and b were optimized by the GA. Calculating the
mean square error between the ANN output and in situ measured daily
average Rn, error analysis was conducted. Then, current w and b were
updated by the optimized values. The ANN model was developed to
estimate Rn using these optimal w and b parameters. The flowchart of
constructing the GA-ANN model is shown in Fig. 2.

2.5. Model development

The ground measurements of the daily average Rn for 82 sites at
high latitudes from 2000 to 2017 were treated as output of the GA-ANN
model. Remote sensing data derived from MODIS were used as input
variables of the GA-ANN model, including the TOA reflectance of eight
shortwave bands (B1-B7 and B19), TOA radiance of 10 longwave bands
(B27-B36), SZA, VZA, relative azimuth angle (RAA), and elevation.
Shortwave bands were used to explain the contributions of shortwave
radiation fluxes to Rn (Wang et al., 2015a; Wang et al., 2012; Wei et al.,
2019; Ying et al., 2019; Zhang et al., 2019), and longwave bands were
used to explain the contributions of longwave radiation fluxes to Rn

(Cheng and Liang, 2016; Cheng et al., 2017; Wang et al., 2018; Wang
and Liang, 2009; Wang et al., 2009; Zhou et al., 2018). Controlling the
atmospheric mass, surface elevation was found to have an impact on
surface radiation budget (He et al., 2015). To address this, the elevation
may act as the model regression variable (Wang and Liang, 2009; Zhou
et al., 2018; Zhou et al., 2019). The LRD is defined as the proportion of

the total daytime duration to the entire day. The LRD significantly
changes with time and space at high latitudes, especially in the polar
regions. The LRD ranges from 0 to 1 and if the LRD is greater than a
threshold value, daily average Rn has a significant relationship with
daytime average Rn. Many studies have used this rule to estimate Rn

(Alados et al., 2003; Guo and Cheng, 2018; Huang et al., 2016; Jiang
et al., 2015; Zhou et al., 2013). However, only using this method is
problematic as at times there are short daytime days at high latitudes. If
LRD is less than a threshold value, daily average Rn is primarily de-
termined by the nighttime average Rn. It is an interesting finding, and
can be used to supplement the solution of estimating daily average Rn

for short daytime days. Besides, when the length of daytime is short at
high latitudes, there may be no MODIS observations in the daytime.
Correspondingly, when the length of nighttime is short at high lati-
tudes, there may be no MODIS observations in the nighttime. By using
an LRD threshold value, we attempted to develop the LRD classification
model for estimating daily average Rn. To build our LRD classification
model, the relationships between daytime average, nighttime average,
and daily average Rn were explored based on ground measurements at
high latitudes. Ground measured Rn values were first integrated to
derive the daytime average, nighttime average, and daily average Rn.
Using the LRD values ranging from 0 to 1 in increments of 0.05, the Rn

dataset was classified into 20 groups. For the 20 group's data, linear
models were developed between daytime average, nighttime average,
and daily average Rn to explore the different contributions of daytime/
nighttime average Rn to daily average Rn. Moreover, different LRD
values were used to build the LRD classification model to determine the
optimal LRD threshold value.

The MODIS cloud product poses great uncertainty at high latitudes
because of issues in distinguishing between cloud, snow, or ice. Ying
et al. (2019) demonstrated that machine learning is a practical algo-
rithm to estimate radiation fluxes under all-sky conditions using a
single model. Therefore, sky conditions were not distinguished in the

Fig. 2. Flowchart for constructing the GA-ANN model.
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GA-ANN model. Furthermore, instantaneous MODIS observations were
used to estimate daily average Rn as there was a relationship between
instantaneous and daily average Rn (Bisht and Bras, 2010; Huang et al.,
2016; Wang et al., 2015b; Wang et al., 2010; Zhang et al., 2019).
Employing both Terra MODIS and Aqua MODIS data, we derived daily
average Rn estimates at 1 km spatial resolution based on the LRD
classification model developed using the GA-ANN algorithm. The
flowchart of the study scheme used to estimate Rn is shown in Fig. 3.
There is usually more than one MODIS observation at high latitudes due
to its orbit design. In these cases, we derived multiple daily average Rn

estimates in one day and all estimates for that day were averaged to
obtain the final daily average Rn.

3. Results and discussion

3.1. Relationship between daytime average Rn, nighttime average Rn, and
daily average Rn

Table 2 lists the statistical indicators of the linear model developed
between the daytime average, nighttime average, and daily average Rn

values for the 20 group's data. The R2 and RMSE values changed with
the LRD values, indicating that average Rn during daytime and night-
time had different contribution to the daily average Rn when the LRD
varied. The linear model between the daytime average Rn and daily
average Rn had increased R2 (0.030–0.999) and decreased RMSE
(21.39–1.04 W/m2) with the increase of the LRD. In general, the day-
time average Rn became increasingly important in estimating the daily
average Rn under higher LRD values. The nighttime average Rn equals
longwave net radiation, as there is an absence of shortwave radiation at

Fig. 3. Flowchart of the study scheme for estimating daily average Rn.

Table 2
Statistical indicators of linear models developed between daytime average Rn,
nighttime average Rn, and daily average Rn under different LRD values.

Min LRD Max LRD Model performance between
daytime average Rn and
daily average Rn

Model performance between
nighttime average Rn and
daily average Rn

R2 RMSE (W/
m2)

R2 RMSE(W/m2)

0.00 0.05 0.030 21.39 0.999 0.20
0.05 0.10 0.675 13.30 0.997 1.28
0.10 0.15 0.784 9.91 0.994 1.68
0.15 0.20 0.776 10.86 0.987 2.63
0.20 0.25 0.737 11.19 0.973 3.61
0.25 0.30 0.718 11.75 0.924 6.10
0.30 0.35 0.718 12.45 0.841 9.36
0.35 0.40 0.713 11.94 0.738 11.42
0.40 0.45 0.696 12.70 0.414 17.64
0.45 0.50 0.782 11.42 0.474 17.75
0.50 0.55 0.892 11.09 0.164 30.81
0.55 0.60 0.959 9.59 0.050 46.32
0.60 0.65 0.972 8.57 0.034 50.63
0.65 0.70 0.981 8.06 0.031 57.47
0.70 0.75 0.989 6.86 0.009 63.85
0.75 0.80 0.991 6.09 0.001 65.27
0.80 0.85 0.997 3.74 0.026 68.90
0.85 0.90 0.996 3.15 0.004 49.48
0.90 0.95 0.998 2.03 0.038 49.49
0.95 1.00 0.999 1.04 0.014 54.53
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night. With a decrease in the LRD, the linear model between the
nighttime average Rn and daily average Rn had increased R2

(0.014–0.999) and decreased RMSE (54.53–0.20 W/m2), showing that
the nighttime average Rn played a significant role in estimating the
daily average Rn under relatively lower LRD values. An adjacent group
with similar LRD exhibited a similar phenomenon. For example, in two
groups, where the LRD ranged from 0.15 to 0.20 and 0.20 to 0.25, daily
average Rn demonstrated a better relationship with the nighttime
average Rn than with the daytime average Rn; the R2 (0.987 and 0.973)
were very close. Therefore, using an LRD threshold, it is possible to
develop the LRD classification model to estimate the daily average Rn.
Furthermore, instantaneous MODIS observation was used directly to
estimate the daily average Rn due to the relationship between the in-
stantaneous Rn and daily average Rn (Bisht and Bras, 2010; Huang
et al., 2016; Wang et al., 2015b; Wang et al., 2010; Zhang et al., 2019).
The operability and acceptable accuracy of this scheme have been
previously proven (Wang et al., 2015b; Zhang et al., 2019). In light of
these findings, daily average Rn was estimated from instantaneous
daytime MODIS observations when the daytime duration was relatively
long. Conversely, the daily average Rn was estimated from in-
stantaneous nighttime MODIS observations when the nighttime dura-
tion was relatively long.

3.2. LRD classification threshold

To study and determine the LRD threshold applied to develop the
LRD classification model, a dataset including the daytime average,
nighttime average, and daily average Rn was divided into two groups
based on different LRD values. One group, where LRD was greater than
the classification threshold, was used to investigate the relationship
between the daytime average Rn and daily average Rn (expressed as
relationship I). The other group where LRD was less than the classifi-
cation threshold was used to explore the relationship between the
nighttime average Rn and daily average Rn (expressed as relationship
II). Table 2 shows that 1) when the LRD ranges from 0 to 0.3, re-
lationship II had higher R2 values (0.999–0.924) than relationship I
(0.030–0.718); 2) however, for the LRD ranging from 0.45 to 1.0, re-
lationship I had higher R2 values (0.782–0.999) than relationship II
(0.474–0.014). According to Figs. 4, 0.30 and 0.45 are also the tipping
point of relationships I and II. So LRDs ranging from 0.30 to 0.45 in
increments of 0.05 require further discussion to determine the specific
LRD classification threshold.

Table 3 shows the model training and validation results using dif-
ferent LRD thresholds such as 0.30, 0.35, 0.40, and 0.45 to develop the
LRD classification model according to the GA-ANN algorithm. Model I

corresponds to the algorithm developed for cases higher than the LRD
threshold, and model II corresponds to the algorithm developed for
cases less than the LRD threshold; i.e. model I used instantaneous
daytime MODIS observations to estimate the daily average Rn, and
model II used instantaneous nighttime MODIS observations to estimate
daily average Rn. The R2 and RMSE values were mainly applied to
evaluate model performance because their bias values were similar. The
biggest bias difference among various models was only 0.25 W/m2 for
the training result and 0.45 W/m2 for the validation result (Table 3).
Considering the training results as shown in Table 3, model I developed
under an LRD classification threshold of 0.3 performed best with an R2

of 0.86 and an RMSE of 22.55 W/m2. Model I under diverse LRD
thresholds had a comparable performance for the validation dataset.
Model II developed under an LRD classification threshold of 0.3 had the
highest accuracy for the training (R2 = 0.5; RMSE = 14.95 W/m2) and
validation (R2 = 0.51; RMSE = 15.04 W/m2) datasets (Table 3).
Considering the accuracy of models I and II, the LRD classification
threshold was determined to be 0.3. Relationships I and II had R2 values
of 0.87 and 0.97, respectively, under an LRD threshold of 0.3. The
following section of this study focuses on the LRD classification model
developed using an LRD threshold of 0.3.

3.3. Performance of the LRD classification model

The LRD classification model was proposed via a GA-ANN algo-
rithm, where models I and II have 40 neurons each. The training and
validation results of the LRD classification model are shown in Fig. 5.
The training results of model I had an R2 of 0.86, an RMSE of 22.55 W/
m2, and a bias of 0.26 W/m2 (Fig. 5a). These values were 0.85,
23.66 W/m2, and 0.27 W/m2 (Fig. 5c), respectively, for the validation
results. The model II training R2, RMSE, and bias values were 0.5,
14.95 W/m2, and −0.26 W/m2 (Fig. 5b), respectively; and the model II
validation R2, RMSE, and bias values were 0.51, 15.04 W/m2, and
−0.08 W/m2 (Fig. 5d), respectively. For models I and II, the R2 values
of the training process were nearly equal to that of the validation
process and the RMSE values of the training process were lower than
the validation process. In the training and validation processes, there
was no significant difference in the bias for models I and II.

According to the scatter plots shown in Fig. 5, the GA-ANN algo-
rithm showed satisfactory performance for establishing the LRD clas-
sification model in estimating the all-sky daily average Rn. GA-ANN
inherits the merits of ANN and improves its performance. Compared
with ANN, the main advantage of GA-ANN is the higher prediction
accuracy, which has been demonstrated in previous studies (Armaghani
et al., 2018; Irani and Nasimi, 2011; Mohamad et al., 2017). ANN va-
lidation results for model I had an R2 of 0.83, an RMSE of 24.93 W/m2,
and a bias of 0.83 W/m2, and these values were 0.40, 16.80 W/m2, and
−1.20 W/m2 for the R2, RMSE, and bias, respectively, in model II.
Thus, GA-ANN also outperformed ANN for estimating daily average Rn.

Fig. 4. R2 between the daytime (nighttime) average Rn and daily average Rn

when the dataset is divided into two groups using the predefined LRD
threshold.

Table 3
Model training and validation results under different LRD classification
threshold. Model I was developed under higher LRD values, and model II was
developed under lower LRD values.

LRD Model Model training Model validation

R2 RMSE (W/
m2)

bias (W/
m2)

R2 RMSE (W/
m2)

bias (W/
m2)

0.30 Model I 0.86 22.55 0.26 0.85 23.66 0.27
Model II 0.5 14.95 −0.26 0.51 15.04 −0.08

0.35 Model I 0.86 23.14 0.16 0.85 23.51 0.00
Model II 0.42 16.18 −0.06 0.42 16.14 0.37

0.40 Model I 0.85 23.56 0.27 0.85 23.64 0.45
Model II 0.45 15.91 −0.13 0.41 16.27 0.09

0.45 Model I 0.85 24.15 0.32 0.85 24.01 0.12
Model II 0.49 15.49 −0.01 0.49 15.54 0.06
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Note that we focus on the Rn retrieval scheme at high latitudes and test
GA-ANN; however, the other machine learning algorithms such as
support vector machine and random forest may also be applied.

For model validation, mean relative error (MRE) of model I and II
were 7.07% and 8.10%, respectively. Compared to model I, model II
had lower RMSE and bias and higher relative error. The range of daily
average Rn is likely to increase with daytime length, and thus the model
II outputs relatively lower Rn estimates for short daytime days. The
accuracy of model I was mainly dependent on shortwave radiation,
while model II performance was determined by longwave radiation.
Previous studies have demonstrated that shortwave radiation could be
accurately estimated using in situ data and matched satellite TOA ob-
servations (Hao et al., 2019; Jiang et al., 2019; Wei et al., 2019).
However, so far, remote sensing estimation of longwave radiation
under all-sky conditions is a significant challenge (Cheng et al., 2017;
Wang et al., 2018; Zhou et al., 2018; Zhou et al., 2019). The afore-
mentioned discussions provides the basis for model II having lower bias
and RMSE but higher relative error. Wang et al. (2009) used hybrid
model to estimate longwave net radiation under clear-sky conditions
and evaluated model performance at six Surface Radiation Budget
(SURFRAD) sites, and finding that RMSEs were close to 20 W/m2. Guo
et al. (2018) developed a machine learning model to estimate longwave
net radiation under cloudy-sky conditions from shortwave net radia-
tion, where the validation results at 24 sites had a bias of 0.01 W/m2

and an RMSE of 26.10 W/m2. Although we focus on Rn retrieval, the
outputs of model II were mainly contributed by longwave net radiation
(R2 = 0.97), and validation results of model II (RMSE = 15.04 W/m2,
bias = −0.08 W/m2) were slightly better than these studies. Although
model II has satisfactory overall performance, it should be noted that

model II may not be able to provide accurate estimates for the extreme
cases with Rn values above 0 W/m2 and close to −100 W/m2, owing to
a lack of sufficient training data that fell into the extreme value ranges.
Recently, some new techniques have been introduced to estimate all-
sky longwave radiation using additional auxiliary variables (e.g., Wang
et al., 2019; Wang et al., 2020), which could be further evaluated and
properly tuned at high latitudes to improve the accuracy of model II for
extreme cases. Considering the unfeasibility of hybrid model and
shortwave net radiation based model, model II shows potential and is
easy to implement to estimate Rn under short daytime days.

MODIS cloud product (MOD035/MYD035) was used to discuss
model performance for days dominated by clear-sky or cloudy-sky.
MOD035/MYD035 provides four cloud detection confidence levels,
namely, confident clear, probably clear, uncertain clear, and cloudy to
each image pixel. Uncertain clear and cloudy pixels were labeled as
cloudy, and confident clear and probably clear pixels were labeled as
clear (Ying et al., 2019). Proportions of cloudy MODIS observations to
total observation frequency were then calculated within one day.
Table 4 presents the validation results of models I and II for different
elevations, land cover types, and proportions of cloudy MODIS ob-
servations. These results indicate that model performance was not
linked with elevation changes. With the except of barren land, valida-
tion results of models I and II for different land cover types were close.
Models I and II over barren land performed slightly poorly than other
land cover types. Shortwave/longwave net radiation retrieval models
have been found to have lower accuracy at sites covered by barren land
(Wang et al., 2009; Wang et al., 2015a, 2015b; Guo and Cheng, 2018),
and such issues are also found in this study. This may be because of the
high albedo and low specific heat capacity in barren areas (Diak et al.,

Fig. 5. GA-ANN model training and validation results under a LRD classification threshold of 0.3. (a) Model training result for model I; (b) model training result for
model II; (c) model validation result for model I; (d) model validation result for model II. Model I corresponds to the algorithm developed under the cases that are
higher than the LRD threshold of 0.3, and model II corresponds to the algorithm developed under the cases that are less than the LRD threshold of 0.3. Note that the
color bar represents data density.
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2000; Guo and Cheng, 2018). Note that cloud detection products pose
great uncertainty at high latitudes because of issues in distinguishing
between cloud, snow, or ice (Zhu and Woodcock, 2012; Stillinger et al.,
2019), and so validation results for different proportions of cloudy
MODIS observations were only treated as the supplementary analysis.
Generally, there are no significant differences for days dominated by
clear-sky or cloudy-sky conditions. Thus, it may be concluded that
overall model performance was acceptable, and the accuracy for dif-
ferent conditions including elevations/land cover types/sky conditions
were close or comparable.

Previous studies have demonstrated that multiple satellite ob-
servations could improve the accuracy of estimating radiation flux
components at a daily scale (Wang et al., 2015b; Wang et al., 2010). We
used instantaneous MODIS observation to estimate the daily average
Rn; therefore, multiple MODIS observations at high latitudes during one
day correspond to multiple daily average Rn estimates. Final daily
average Rn estimates were averaged from multiple daily average Rn

estimates. Fig. 6 shows the relationship between the model error and
MODIS observation frequency. The error largely decreased with the
increase of MODIS observation frequency for model I. Compared with
model I, the absolute error of model II presents a slight decrease with
increasing MODIS observation frequency. Absolute errors of the Rn

estimates from model II, ranging from −50 to 50 W/m2, were relatively
lower. Therefore, the contribution of MODIS observation frequency on
the decreased error was less evident with a weak trend. As the ob-
servation frequency of MODIS and other polar-orbiting satellites is
dependent on the latitude, lower latitudes achieved less MODIS over-
passes. Wang et al. (2015b) recommended that combing the use of
geostationary and polar-orbiting satellite datasets would help improve
the accuracy of estimating daily average radiation fluxes. Note that
invalid MODIS observations such as filling and abnormal data records
were removed prior to model development. MODIS observation fre-
quency histograms for models I and II are shown in Fig. 7. As for model
I, the valid MODIS observation frequency had a mean value of 4.3 and
most of these values (70.83%) were greater than 2. The corresponding
values for model II, were 6 and 82.35%, respectively, indicating that
polar orbiting contributes more valuable information in estimating the
daily average Rn at high latitudes. Fig. 6 shows two interesting phe-
nomena. First, the errors show a steady trend when the MODIS ob-
servation frequency increased to 14 for model I. This may be because
the satellite overpasses 14 times per day were adequate to capture the
diurnal cycle of Rn over high latitudes. This finding provides valuable
information in determining the remote sensing data volume of esti-
mating daily average Rn from multi-source satellites. Second, the

clustering points occur around an error of zero when the valid MODIS
observation frequency ranged from two to four. Stable weather condi-
tions resulted in that limited satellite observation frequency still
achieved the estimation of daily average Rn with high accuracy (Wang
et al., 2010). On the other hand, most points concentrated around an
error of zero indicated that the LRD classification model had good ro-
bustness. It has been demonstrated that the machine learning algorithm
is a potential solution to estimate cloud parameters such as cloud top
height and temperature using satellite observation (Håkansson et al.,
2018; Min et al., 2020). For cloudy-conditions, those cloud parameters
are the main factors controlling longwave balance at the surface (Wang
et al., 2018). Thus, the proposed model II in this study had acceptable
results in estimating the daily average Rn under all-sky conditions.

We also developed model I only using shortwave bands to estimate
Rn; model performance was evaluated as shown in Fig. 8. The training
and validation results indicate that model I, without MODIS longwave
bands, had a larger bias value when the daily average Rn was greater
than 200 W/m2, which was consistent with previous studies (Wang
et al., 2015a). Compared with model I that used a combination of
MODIS shortwave and longwave bands, the validation results had de-
creased R2 (0.82), increased RMSE (25.73 W/m2) and bias (1.51 W/
m2). As the number of point pairs was large, the overall statistical in-
dicators changed slightly. This is because the relationship between the
Rn and shortwave net radiation would deteriorate at times, and the
contribution of longwave radiation fluxes on Rn could not be fully ac-
counted. Overall, our results suggest that the longwave information
plays an important role in estimating Rn.

3.4. Model application over the high latitudes

The time series for the daily average Rn validation results in 2014 at
six sites along a gradient of varying latitude are shown in Fig. 9. It is
evident that the estimated Rn could sufficiently capture seasonal
changes. The validation results at the six sites are acceptable with an
RMSE of less than 23.86 W/m2, a bias of less than −5.56 W/m2, and an
R2 of more than 0.88. The six examples show that the LRD classification
model developed using the GA-ANN algorithm performs well along the
varying latitude. Overall, the remote sensing estimates of the daily
average Rn were close to ground measurements. Furthermore, there
were no large bias values in the Rn estimates for models I and II (Fig. 9),
and the Rn estimates were continuous when the LRD threshold value
was near 0.3.

As shown in Fig. 10, the LRD classification model was further ap-
plied to the real MODIS images to map the daily average Rn at high
latitudes on March 23, July 20, September 23, and December 25, 2014.
The high latitudes had significantly varying LRD values in these four
seasons. Model I was mainly used for July 20, 2014, and model II was
mainly used for December 25, 2014. The daily average Rn derived from
the CERES-SYN product for the same day was also presented in Fig. 10
to compare the overall spatial distributions. There were significant
differences with respect to the number of pixels from our estimates and
CERES product. There were approximately 8,705,863 pixels in the Rn

mapping estimated from our GA-ANN LRD classification model, ap-
proximately 2291 times that from CERES-SYN product (approximately
3800 pixels).

Fig. 10 shows that the Rn estimates from MODIS and CERES have
similar spatial distribution patterns in different seasons. There are
lower Rn estimates in relatively higher latitude regions. Mappings of
daily average Rn imply that our proposed models have potential values
for estimating daily 1 km Rn at high latitudes. Rn estimates on February
28, 2014 were also mapped (Fig. 11). In this study, two Rn retrieval
models were built based on the LRD threshold value of 0.3. On February
28, 2014, if latitude was greater than 76.7°, the LRD value was less than
0.3, while if latitude was less than 76.7°, the LRD value was greater
than 0.3. As shown in Fig. 11, Rn estimates were also continuous when
the LRD value was near 0.3. Besides, Rn estimates from MODIS and

Table 4
Validation results of models I and II for different elevations, land cover types,
and proportions of cloudy MODIS observations.

Group Model I Model II

RMSE (W/m2) bias (W/m2) RMSE (W/m2) bias (W/m2)

Elevation (m)
< 500 24.77 −0.25 14.73 −0.39
> 500 to 1000 21.58 −0.68 17.86 0.32
> 1000 18.02 0.69 16.38 0.57

Land cover types
Forest 24.77 −1.69 16.82 0.29
Shrubland 27.10 1.15 12.30 −0.03
Grassland 23.16 1.93 12.43 −0.88
Wetland 19.16 0.40 13.49 −0.09
Ice/Snow 20.45 −0.35 17.28 0.21
Barren 27.85 −3.24 17.95 −1.59

Proportion of cloudy MODIS observations (100%)
< 30 23.72 −0.12 16.46 3.02
> 30 to 60 25.67 −1.16 16.64 2.60
> 60 22.28 0.66 15.33 −1.46
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CERES also have a similar spatial distribution pattern. This indicates
that the chosen LRD threshold value is reasonable. Compared with the
CERES product, the Rn estimates from MODIS provided more details
due to a much higher spatial resolution. There is an abnormal high-
value Rn area in central Greenland (Fig. 10(h)), which may be due to
the poor precision of CERES Rn over Greenland (Jia et al., 2016).
However, MODIS-estimated Rn had smooth changes in this area.

These differences between MODIS and CERES are partly due to the
disparity of the algorithm, data source, and many other factors. Rn is
affected by both land surface and atmospheric conditions. The proposed
algorithm was developed using extensive matched pairs between in situ
Rn data and MODIS TOA observations. Thus, the algorithm performance
may degrade in areas where the land surface and atmospheric condi-
tions are not included in our dataset. Actually, we have tried our best to
collect in situ measured Rn data. There are limitations that remain for
the proposed algorithm. Further work will be done to improve the es-
timation of longwave radiation at high latitudes in the future. However,
the merits of our algorithm include its independence from other aux-
iliary data, great maneuverability, and the generation of Rn results with
1 km spatial resolution. Finally, the solution of model I development
and implementation proposed in this study may still be suitable for the
mid and low latitudes. However, the employed satellite should be
changed to geostationary satellite such as GOES-16, MSG-1, and
Himawari-8. The remote sensing algorithm for estimating all-sky daily
average Rn provides the potential for spatio-temporal analysis of SEB
over high latitudes such as Greenland and other ice-covered areas.

4. Conclusion

Rn is a significant parameter driving various land surface processes

Fig. 6. Scatter plots of model training error, model validation error, and MODIS observation frequency. (a) Model training error and MODIS observation frequency
for model I; (b) model training error and MODIS observation frequency for model II; (c) model validation error and MODIS observation frequency for model I; (d)
model validation error and MODIS observation frequency for model II. Note that the color bar represents data density.

Fig. 7. Histogram of MODIS observation frequency. (a) Histogram of model I;
(b) histogram of model II.
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and quantifying SEB status; thus, accurate estimation of Rn is of great
importance. In this study, we focused on the estimation of the daily
average Rn from MODIS data at high latitudes. A hybrid machine
learning model, the GA-ANN algorithm, was adopted to estimate the
daily average Rn because of the known limitations of existing methods
at high latitudes. To further improve the Rn, LRD values were in-
troduced to distinguish the different contributions of daytime and
nighttime Rn to the daily average Rn. Based on sensitivity analysis, it
was found that an LRD value of 0.3 was the best threshold to develop
the LRD classification model. The LRD classification model, including
models I and II, was employed to estimate the daily average Rn under
all LRD conditions. Model I had an R2 of 0.85, an RMSE of 23.66 W/m2,
and a bias of 0.27 W/m2 for the validation dataset, whereas these va-
lues were 0.51, 15.04 W/m2, and − 0.08 W/m2 for model II. Errors of
the Rn estimates decreased with increasing MODIS observation fre-
quency. The contribution of longwave radiation fluxes on Rn should be
carefully accounted by inputting MODIS longwave bands in the GA-
ANN model. Time series for the validation results of the daily average

Rn in 2014 at six sites along the varying latitude indicated that the
estimated Rn from MODIS sufficiently captured seasonal changes, with
an RMSE of less than 23.86 W/m2, a bias of less than −5.56 W/m2, and
an R2 of more than 0.88. Application of the LRD classification model to
real MODIS images to map the daily average Rn over high latitudes on
March 23, July 20, September 23, and December 25, 2014, had a si-
milar spatial distribution to the CERES product.

Overall, the LRD classification model that was developed based on
the GA-ANN algorithm is a feasible scheme to estimate the daily
average Rn with 1 km spatial resolution at high latitudes. The model
proposed in this study needs no high-level surface and atmosphere
parameter products or auxiliary data and only uses MODIS L1B pro-
ducts. Thus, the proposed approach demonstrated the potential for
generating long-term daily average Rn products with MODIS data. This
is a very important supplement to existing data sources for climate
change applications at high latitudes. The Rn products will be available
in the near future.

Fig. 8. GA-ANN model training and validation results using only shortwave bands of MODIS for model I. Note that the color bar represents data density.

Fig. 9. Time series for daily average Rn in 2014 at six sites along a gradient of varying latitude. The latitude and longitude of six sites are: (a) 61.0308°, −46.8493°;
(b) 64.4822°, −49.5358°; (c) 67.0955°, −49.9513°; (d) 72.8878°, −53.5783°; (e) 76.3998°, −68.2665°; (f) 79.9108°, −24.0828°. Altitude of the six sites are 280,
530, 670, 940, 570, and 370 m, respectively.
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Fig. 10. Mapping of daily average Rn at high latitudes on March 23, July 20, September 23, and December 25, 2014. (a), (c), (e), and (g) are Rn estimates derived
from MODIS images at 1 km spatial resolution on March 23, July 20, September 23, and December 25, 2014, respectively. (b), (d), (f), and (h) are Rn estimates
derived from CERES product at 1° spatial resolution on March 23, July 20, September 23, and December 25, 2014, respectively.

Fig. 11. Mapping of daily average Rn at high latitudes on February 28, 2014. (a) Rn estimates derived from MODIS at 1 km spatial resolution on February 28, 2014.
(b) Rn estimates derived from CERES product at 1° spatial resolution on February 28, 2014. LRD is 0.3 near latitude 76.7°.
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