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Abstract 12 

Snow cover condition across the Tibetan Plateau (TP) is not only a significant indicator of 13 

climate change but also a vital variable in water availability because of its water storage function 14 

in high-mountain regions of Southwest China and the surrounding Asian countries. Limited by 15 

low spatial resolution, incomplete spatial coverage, and short time span of the current snow 16 

cover products, the long-term snow cover change across the TP under the climate change 17 

background remains unclear. To resolve this issue, a composite long-term gap-filled TP daily 18 

5-km snow cover extent (SCE) record (TPSCE) is generated by integrating SCE from the 19 
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Advanced Very High-Resolution Radiometer (AVHRR) surface reflectance climate data record 20 

(CDR) and several existing snow cover data sets, with the help of a decision tree snow cover 21 

mapping algorithm, for the period 1981‒2016. A snow discrimination process was used to 22 

classify the land surface into snow (pre-TPSCE) and non-snow using AVHRR surface reflectance 23 

CDR. To fill gaps caused by invalid observations and cloud contamination in pre-TPSCE, several 24 

existing daily SCE products, including MOD10C1, MYD10C1, IMS, JASMES, and a passive 25 

microwave snow depth data set are employed in the composition process. The daily snow 26 

discrimination accuracy, tested by ground snow-depth observations during 2000–2014, shows 27 

that the TPSCE captures the distribution of snow duration days (R2 = 0.80, bias = 3.93 days) 28 

effectively. The comparison between the TPSCE and fine-resolution snow cover maps 29 

(MCD10A1-TP) indicates high comparability between the TPSCE and MCD10A1-TP. In 30 

addition, cross-comparisons with changes in temperature, precipitation, and land surface albedo 31 

indicate that the TPSCE is reliable in climate change studies. In summary, the TPSCE is spatially 32 

complete and covers the longest period among all current snow cover products from satellite 33 

observations. The TPSCE seamlessly records changes in snow cover across the TP over the past 34 

36 years, thereby providing valuable snow information for climate change and hydrological 35 

studies. 36 

Keywords: Tibetan Plateau; Snow cover extent; AVHRR surface reflectance CDR; Climate 37 

change 38 



3 

 

1. Introduction  39 

Snow cover is a critical component of the cryosphere and climate system on both the local and 40 

the global scales. As the "third pole" and "Asian water tower" with the highest mid-latitude 41 

mountains and largest cryosphere extent outside the polar regions, the Tibetan Plateau (TP) 42 

largely affects the regional environment and controls climatic and environmental changes in 43 

China, Asia, and even the Northern Hemisphere (NH) at large (Kang et al., 2010; Larson, 2011; 44 

Ma et al., 2009; Pu et al., 2008; Yao et al., 2012). Snow cover on the TP has large potential to 45 

influence the regional hydrological cycle (Qian et al., 2011), affects the frequency of heat waves 46 

in northern China (Wu et al., 2012), and results in anomalies in vegetation greenness onset 47 

(Dong et al., 2013), the atmosphere–land interaction (Ma et al., 2009), and the East Asian 48 

summer monsoon (Pu et al., 2008). Furthermore, seasonal snow cover across the TP constitutes a 49 

vital source of surface water for Southwest China and the surrounding Asian countries (e.g., 50 

Pakistan, India, Nepal, Bangladesh, and Bhutan). Thus, quantifying snow cover conditions 51 

across the TP is essential for meteorological, hydrological, ecological, and societal implications. 52 

Satellite remote sensing has been employed to map and monitor snow cover for more than forty 53 

years (Brown et al., 2010; Frei et al., 2012), because data collection by traditional field snow 54 

surveying is time consuming, costly, and extremely difficult. Using data sets, such as the binary 55 

daily snow cover mask derived from the Interactive Multi-sensor Snow and Ice Mapping System 56 

(IMS) (Helfrich et al., 2007), the Northern Hemisphere Weekly Snow Cover and Sea Ice Extent 57 

(NHSCE) (Helfrich et al., 2007; Robinson et al., 1993), the Moderate-Resolution Imaging 58 
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Spectroradiometer (MODIS) snow cover products (Hall et al., 1995), the Suomi National 59 

Polar-orbiting Partnership (NPP) snow cover suite  (Key et al., 2013), the  European Space 60 

Agency (ESA) Global Snow Monitoring for Climate Research (GlobSnow) (Pulliainen, 2006), 61 

and snow water equivalent (SWE) products from the Advanced Microwave Scanning 62 

Radiometer-Earth Observing System (AMSR-E) (Kelly et al., 2003) and GlobSnow, the 63 

continental-scale snow cover anomalies are well quantified. Nevertheless, owing to complex 64 

topography, heterogeneous land cover types, and scattered snow cover distributions over the TP, 65 

as well as the limitations of the current snow cover data sets, the long-term snow cover condition 66 

across the TP remains unclear. Among the current snow cover products, the Suomi-NPP has high 67 

snow classification accuracy (> 90%) (Key et al. 2013), the MODIS snow cover products 68 

provide moderate spatial resolution (500 m) and high temporal resolution (Hall et al., 1995), the 69 

IMS provides complete spatial coverage (Helfrich et al., 2007), and the NHSCE provides the 70 

longest time span (4 October 1966 to the present) (Helfrich et al., 2007; Robinson et al., 1993). 71 

However, incomplete spatial coverage (e.g., Suomi-NPP and MODIS), short time span (e.g., 72 

Suomi-NPP and IMS), and low spatial resolution (e.g., NHSCE and GlobSnow) largely restrict 73 

the application of these products in snow cover studies across the TP.  74 

To improve the understanding of snow cover changes over the TP under the climate change 75 

background, a long-term series, temporally consistent, and high-quality composite snow cover 76 

data set is needed. Accordingly, the objective of this study was to develop a composite long-term 77 

TP daily 5-km snow cover extent (SCE) record (TPSCE). To generate the preliminary daily 78 
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TPSCE (pre-TPSCE) at the highest achievable spatial resolution and longest time span, we 79 

employed the newly published National Oceanic and Atmospheric Administration (NOAA) 80 

Advanced Very High-Resolution Radiometer (AVHRR) surface reflectance Climate Data Record 81 

(CDR) (Vermote et al. 2014) as primary data. To overcome the shortage of optical AVHRR 82 

images in snow discrimination (mainly caused by invalid observations and cloud contamination), 83 

several ancillary data sets were jointly used in this study. Moreover, to test the reliability of the 84 

TPSCE in climate change studies, temperature, precipitation, and land surface albedo data were 85 

employed for cross-comparison purposes.  86 

This study comprises six sections. Section 2 describes the data sets used in the study. Section 3 87 

presents the processing flowchart for the TPSCE. In section 4, we compare the TPSCE with 88 

ground snow-depth observations and fine-resolution snow cover maps. We analyze the 89 

spatiotemporal variability in SCE from the TPSCE in section 5 and present cross-comparisons 90 

with temperatures, precipitation, and land surface albedo. Finally, in section 6, we summarize 91 

this study and present our conclusions. 92 

2. Data sets and Methodology 93 

2.1. Data sets 94 

2.1.1. AVHRR surface reflectance CDR 95 

The AVHRR surface reflectance CDR is processed from the AVHRR Global Area Coverage 96 

(GAC) Level 1b data set. The AVHRR GAC observations are packaged into data arrays, with 97 

latitudinal and longitudinal dimensions of 3600×7200, covering the globe at 0.05° spatial 98 
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resolution (Vermote et al., 2014). The spectral bands of AVHRR surface reflectance CDR are 99 

summarized in Table 1. The quality control descriptions are listed in Table 2.  100 

Table 1.   101 

Details of spectral bands of AVHRR surface reflectance CDR used in this study. 102 

Bands  Wavelength (mu) Description  

1 0.58–0.68 surface reflectance at 640 nm (SR1) 

2 0.725–1.00 surface reflectance at 860 nm (SR2) 

3 3.55–3.93 surface reflectance at 3.75 microns (SR3) 

4 3.55–3.93 brightness temperature at 3.75 microns (BT37) 

5 10.30–11.30 brightness temperature at 11.0 microns (BT11) 

6 11.50–12.50 brightness temperature at 12.0 microns (BT12) 

7 - quality control flag  

Table 2.   103 

Quality control descriptions of AVHRR surface reflectance CDR used in this study. 104 

Bit Description Value=1  Value=0 

15 polar flag (latitude over 60 degrees (land) or 50 degrees (ocean)) Yes No 

14 BRDF-correction issues Yes No 

13 RHO3 value is invalid Yes No 

12 Channel 5 value is invalid Yes No 

11 Channel 4 value is invalid Yes No 

10 Channel 3 value is invalid Yes No 

9 Channel 2 value is invalid Yes No 

8 Channel 1 value is invalid Yes No 

7 Channels 1 - 5 are valid Yes No 

6 Pixel is at night (high solar zenith) Yes No 

5 Pixel is over dense dark vegetation Yes No 
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4 Pixel is over sunglint Yes No 

3 Pixel is over water Yes No 

2 Pixel contains cloud shadow Yes No 

1 Pixel is cloudy Yes No 

Compared with AVHRR data sets used in previous studies (Hori et al., 2017; Zhou et al., 2013), 105 

AVHRR surface reflectance CDR provides consistent daily average surface reflectance and 106 

brightness temperatures that are derived from the AVHRR sensors onboard seven NOAA polar 107 

orbiting satellites, including NOAA-7, NOAA-9, NOAA-11, NOAA-14, NOAA-16, NOAA-17, 108 

and NOAA-18 (Vermote et al., 2014). Moreover, AVHRR surface reflectance CDR calibrates 109 

different instruments from 1981 to the present and facilitates their use in current snow mapping 110 

studies. Evaluating the AVHRR surface reflectance CDR performance by cross-comparison with 111 

MODIS in the monitoring of United States wheat yield demonstrated that the utility errors of 112 

AVHRR surface reflectance CDR were equivalent to those derived from MODIS (Franch et al., 113 

2017). Therefore, this AVHRR historical data set was found to be reliable in land cover 114 

classification, especially for years before 2000. In addition, to reduce the snow discrimination 115 

error caused by distortions in pixel geometry, only images with a view zenith angle of less than 116 

45° were used in this study.  117 

Compared with binary snow cover products, fractional snow cover products would provide better 118 

accuracy because of fragmented snow distributions in the TP. However, due to complex 119 

topography and relatively low spatial resolution of AVHRR surface reflectance CDR (0.05°), the 120 

selection of end-members within a grid cell across the TP is variable and uncertain, which limits 121 
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the application of spectral unmixing algorithms among images with different times and locations. 122 

Thus, we developed binary snow products instead of fractional snow cover products in this study. 123 

2.1.2. Ancillary data 124 

(1) MODIS daily snow cover products 125 

The MODIS Terra/Aqua Snow Cover Daily L3 Global 0.05° Climate Modeling Grid (CMG) 126 

(MO/YD10C1) (Hall et al., 1995) reports the percentage of snow-covered land at 0.05° spatial 127 

resolution for the period 2000 to the present and 2002 to the present, respectively. The 128 

percentages are computed from snow cover observations in the MODIS Terra/Aqua Snow Cover 129 

Daily L3 Global 500-m Grid (MO/YD10A1) data set (Hall et al., 1995). The overall absolute 130 

accuracy of MOD10A1 is higher than 93% under ideal conditions of illumination, clear skies, 131 

and several centimeters of snow on a smooth surface (Hall and Riggs, 2007). A study by 132 

Polashenski et al. (2015) indicated that Collection 5 MODIS data, particularly that of Terra, 133 

showed systematic temporal trends in visible and near-infrared bands. To avoid uncertainties 134 

induced by this issue in MO/YD10C1, we used collection 6 MO/YD10C1 in our study. However, 135 

limited by cloud contamination, swath coverage, warm bright surface features, and low 136 

illumination, the spatial coverages of MO/YD10C1are not complete. 137 

(2) IMS snow cover product 138 

The IMS snow cover product is created manually by a snow analyst observing all the available 139 

satellite imagery, automated snow mapping algorithms, and other ancillary data (Helfrich et al., 140 

2007). This data set provides daily snow cover maps for the NH from February 1997 to the 141 
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present at three different resolutions, i.e., 1 km, 4 km, and 24 km. To fill the gaps in the 142 

pre-TPSCE at the highest achievable spatial resolution, we used the IMS snow mask at 4-km 143 

spatial resolution from early 2004 to the present. The daily rate of agreement between the IMS 144 

snow maps and ground snow observations between 2006 and 2010 ranged mostly between 80% 145 

and 90% through winter seasons (Chen et al., 2012). However, the snow classification accuracy 146 

of IMS is only 60% because of serious omission error over the TP as was evaluated by Yu et al. 147 

(2016). 148 

(3) JASMES snow cover product 149 

The NH daily 5-km SCE product (JASMES) was developed by the application of a consistent 150 

objective snow cover mapping algorithm to data from historical optical sensors on polar orbiting 151 

satellites during 1978–2015, including AVHRR GAC radiance data of NOAA from November 152 

1978 to December 2005, and MODIS radiance data (MOD02SSH of Terra, MYS02SSH of Aqua) 153 

from March 2000 to December 2015 (Hori et al., 2017). Owing to gaps caused by track, swath, 154 

solar zenith angle, view zenith angle, and cloud contamination, the JASMES daily SCE data are 155 

not spatially complete. Comparison with NOAA weekly SCE that is corrected by in situ data 156 

indicates the reliability of the long-term trends of the JASMES product. However, the correlation 157 

between the annual snow duration (SCD) trends derived from both in situ measurements and 158 

JASMES showed that there is not only a weak correlation between SCD trends from the 159 

JASMES and in situ data (R=0.330 for NH) but also an overestimation tendency of the 160 

JASMES-derived trends (Hori et al., 2017). Since the systematical error between AVHRR and 161 
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MODIS could influence the consistency of the JASMES data set, we used only the JASMES 162 

generated by the NOAA AVHRR GAC radiance data in this study.  163 

(4) Passive microwave snow-depth data  164 

Compared with optical remote sensing, passive microwave sensors offer the potential to estimate 165 

snow cover under cloudy conditions (Frei et al., 2012). To partially address the cloud 166 

contamination issue that exists in optical snow cover data sets, the passive microwave derived 167 

snow-depth data set (PSD) developed by Che et al. (2008) was employed in this study. The PSD 168 

data set at 25-km spatial resolution was retrieved from inter-calibrated brightness temperature 169 

data from the Nimbus-7 Scanning Multichannel Microwave Radiometer (SMMR) during 1978–170 

1987, the Defense Meteorological Satellite Program (DMSP) Special Sensor Microwave/Imagers 171 

(SSM/I) during 1987–2007, and the DMSP Special Sensor Microwave Imager/Sounder (SSMI/S) 172 

during 2008–2016 by using the modified Chang algorithm and a dynamically adjusted algorithm 173 

(Che et al., 2008). The inter-sensor calibration improved the consistency of the daily snow-depth 174 

products and provided a temporally consistent, long-term series of snow-depth data set over 175 

China, which were important in the development of the TPSCE. However, there are 176 

misclassification and errors in the PSD-derived SCE due to relatively coarse spatial resolution of 177 

passive microwave remote sensing, ground temperature, snow characteristics and topography 178 

according to Dai et al. (2017), especially over the frozen ground (Tsutsui and Koike 2012). 179 

(5) Landsat 5 TM data 180 

Landsat 5 TM images at 30-m spatial resolution were employed as "ground truth" to adjust the 181 
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threshold of the normalized difference snow index (NDSI) applied in the snow discrimination 182 

process. Since both Landsat 5 TM images and AVHRR surface reflectance CDR are often 183 

contaminated by cloud cover, few images are ideal in the comparison process. After 184 

cross-comparison of cloud cover from Landsat 5 TM images and AVHRR surface reflectance 185 

CDR, only two Landsat 5 TM images were selected in this study. Details of the two Landsat 5 186 

images are listed in Table 3. 187 

Table 3.   188 

Details of Landsat images used in this study.  189 

No. Path   Row Date Cloud cover (%) Latitude (°N) Longitude (°N) 

A 149 035 2011-04-27 2.85 75.23 36.05 

B 151 035 2011-04-25 1.86 72.15 36.05 

(6) Land cover types data 190 

To increase the snow discrimination accuracy from the AVHRR surface reflectance CDR, the 191 

generation of the TPSCE was initiated within the framework of the International Geosphere 192 

Biosphere Program (IGBP) land cover types from MCD12Q1. The IGBP divides the land surface 193 

into 17 types, including 11 natural vegetation types, 3 land use and land mosaic types, and 3 194 

vegetation-free land types (Friedl et al., 2010). The land cover types over the TP derived from 195 

MCD12Q1 in 2012 are presented in Fig. 1. 196 
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 197 

Fig. 1. Location and distribution of IGBP land cover types across the TP derived from MCD12Q1 in 2012. 198 

To increase the effectiveness of discriminating snow cover from other land surfaces, we 199 

re-classified the land cover types defined by the IGBP across the TP into four types, i.e., (1) 200 

mixed forest and shrublands, (2) grasslands, (3) barren land, and (4) snow and ice. The mixed 201 

forest and shrublands, including evergreen needle-leaf forest, evergreen broad-leaf forest, mixed 202 

forest, closed shrublands, open shrublands, and woody savannas are defined by the IGBP. The 203 

grasslands, including cropland/natural vegetation, grasslands, and cropland are also defined by 204 

the IGBP. The barren land, including barren or sparsely vegetated, urban, and built-up is defined 205 

by the IGBP. The snow and ice types equal to the types defined by the IGBP. 206 

(7) Elevation data  207 

To detect cloud before the snow discrimination process, the digital elevation model (DEM) 208 

derived from the Shuttle Radar Topography Mission (SRTM) was used in this study. To match 209 
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the resolution of the AVHRR surface reflectance CDR, we resampled the original SRTM DEM 210 

data at a 90-m resolution to a 0.05° spatial resolution by using a resampling method of ″average″ 211 

with the help of gdalwarp (http://www.gdal.org/gdalwarp.html). 212 

2.1.3 Cross-comparison data 213 

(1) Ground snow-depth observations 214 

The ground snow-depth observations were needed to verify the performance of the TPSCE to 215 

capture the actual snow distribution across the TP. In this study, daily snow-depth observations 216 

for the period 2000–2014 were employed for this purpose. The daily snow-depth observations 217 

were obtained from the Data Sharing Service Platform of the China Meteorological 218 

Administration (CMA, http://data.cma.cn/). The distribution of 72 ground snow-depth 219 

observations employed in this study is shown in Fig. 2.  220 

 221 

Fig. 2. Distribution of 72 ground snow-depth observations over the TP and surroundings for the period 2000–2014. 222 

(2) MCD10A1-TP snow cover products 223 

The combined fine-resolution cloud-free gap-filled MODIS daily snow cover data set across the 224 
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TP (MCD10A1-TP) developed by Huang et al. (2014) was used in this study to compare with the 225 

climatology and anomalies of the snow cover over the TP calculated from the TPSCE. 226 

MCD10A1-TP was generated by using daily MOD10A1, MYD10A1, and AMSR-E SWE 227 

products. By combining optical and passive microwave snow products, the overall classification 228 

accuracy of MCD10A1-TP reaches 91.7% when the snow depth is more than 3 cm (Huang et al., 229 

2014), suggesting that MCD10A1-TP is suited for use as a benchmark in our study. 230 

(3) Land surface temperature data 231 

To evaluate long-term snow cover changes derived from the TPSCE by cross-comparison, the 232 

daily-averaged land surface temperature data set, gridded at 0.25° horizontal resolution, derived 233 

from the European Centre for Medium-Range Weather Forecasts Reanalysis (ECMWF) 234 

(ERA-Interim) (Dee et al., 2011) during 1981–2016, was used in this study. ERA-Interim is 235 

widely employed in global and regional climate change studies, e.g., Chen et al. (2015), Cohen et 236 

al. (2010), and Cohen et al. (2014). Evaluation of ERA-interim monthly temperature data over 237 

the TP using 75 ground meteorological stations showed high correlations ranging from 0.97 to 238 

0.99 during 1979−2010 (Gao et al., 2014). 239 

(4) Precipitation data  240 

Similar with the land surface temperature data, the Precipitation Estimation from Remotely 241 

Sensed Information using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR) 242 

(Ashouri et al. 2015) was also employed to compare with long-term snow cover changes derived 243 

from the TPSCE. PERSIANN precipitation CDR provides daily precipitation estimates at a 244 
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spatial resolution of 0.25° in latitudes from 60°S to 60°N from 1983 to the end of 2015. This 245 

product was developed by using Gridded Satellite (GridSat-B1) infrared data that were derived 246 

from merging International Satellite Cloud Climatology Project (ISCCP) B1 infrared data and 247 

Global Precipitation Climatology Project (GPCP) version 2.2 (Ashouri et al., 2015). 248 

(5) CLARA-SAL land surface albedo data 249 

Changes in snow cover have been shown to be related closely with anomalies in land surface 250 

albedo because of high reflectance of snow cover (Chen et al., 2015; Qu and Hall, 2014). 251 

Therefore, the long-term surface albedo data set derived from CLoud, Albedo and surface 252 

RAdiation data set from AVHRR data Edition 2 (CLARA-A2) during 1979 to 2015 at a spatial 253 

resolution of 0.25° was used to compare with the spatiotemporal variability in snow cover 254 

calculated from the TPSCE in our study. The CLARA-SAL surface albedo data set is generated 255 

based on a homogenized AVHRR radiance time series and is created by using algorithms to 256 

derive surface albedo for different land use areas separately, including snow, sea ice, open water, 257 

and vegetation. Currently, the CLARA-SAL surface albedo data set is the only available long 258 

time-span albedo product derived from AVHRR imagery (Riihelä et al., 2013).  259 

2.1.4. Grid cell definition 260 

A summary of data sets used in this study is listed in Table 4.  261 

Table 4.  262 

Summary of data sets used in this study. 263 
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Data 

purpose 
Datasets Time span 

Spatial 

resolution 

Temporal 

resolution 
References 

Primary 

data 

AVHRR surface 

reflectance CDR 

1981–present 0.05° Daily Vermote et al. (2014) 

Ancillary 

data 

MOD10C1 2000–present 0.05° Daily Hall et al. (1995)  

MYD10C1 2002–present 0.05° Daily Hall et al. (1995)  

IMS 2004–present 4-km Daily Helfrich et al. (2007)  

JASMES 1978–2015 5-km Daily Hori et al. (2017) 

PSD 1978–2016 25-km Daily  Che et al. (2008) 

ERA 1972–present 0.125° Daily Dee et al. (2011) 

SRTM DEM – 90-m – http://seamless.usgs.gov/ 

MCD12Q1 2012 0.05° Yearly Friedl et al. (2010)  

Cross-com

parison 

data 

MCD10A1-TP 2000–2014 500-m Daily Huang et al. (2014) 

NHSCE 1966–2015 24-km Weekly Robinson et al. (1993)  

CLARA-A2 1979–2015 0.25° Monthly Riihelä et al. (2013) 

PERSIANN 1983–2015 0.25° Daily Ashouri et al. (2015) 

To match the spatial resolution of the AVHRR surface reflectance CDR, other data sets were 264 

regridded at a spatial resolution of 0.05° and an array resolution of 800×300 pixels with 265 

geographic latitude/longitude projection by using the resampling method of "average" or 266 

"cubic-spline" with the help of gdalwarp (http://www.gdal.org/gdalwarp.html). For data sets with 267 

a spatial resolution greater than 0.05°, we used "average" in the resampling process, which 268 

computed the average of all non-NODATA contributing pixels in the domain of our study. For 269 

data sets with a spatial resolution lower than 0.05°, we used "cubic-spline" in the resampling 270 

process. The latitude and longitude of the center of the upper left grid cell were set at 40.0°N and 271 
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66.0°E according to the location of TP, as shown in Fig. 1. The latitude and longitude data 272 

correspond to a center pixel of a 0.05° by 0.05° block of grid cells in the TPSCE. 273 

2.2. Snow discrimination accuracy evaluation 274 

2.2.1. Evaluation by ground snow-depth observations 275 

Validating moderate-resolution satellite images by field measurements is difficult because a 276 

single grid cell from satellite measurements can measure the information from an extremely large 277 

area, which may overestimate or underestimate the information from a field measurement. 278 

However, the field measurements are still the most convincing records to test the reliability of 279 

satellite retrieved products. To estimate the snow discrimination accuracy of the TPSCE, we used 280 

snow duration days (Dd) as criteria in comparison with ground snow depth observations (Fig. 2). 281 

For a given grid cell, Dd was defined as the number of days in a calendar year with snow cover 282 

on the ground.  283 

2.2.2. Evaluation by fine-resolution MCD10A1-TP products 284 

In addition to comparisons with ground snow-depth observations, comparison with higher 285 

spatial-resolution images is widely used in the validation of moderate-resolution satellite images, 286 

such as by Hall et al. (1995). Compared with the newly developed TPSCE, the MCD10A1-TP 287 

represents consistent and objective snow estimates derived from high-resolution optical remote 288 

sensing data. Therefore, the MCD10A1-TP was used as the benchmark for the TPSCE. The 289 

root-mean-square error (RMSE) and bias were used as criteria to evaluate the relative accuracy 290 

of the TPSCE relative to MCD10A1-TP during the period 2001 to 2014. The RMSE and bias of 291 
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the TPSCE to MCD10A1-TP are expressed as follows:  292 

                           (1) 293 

                             (2) 294 

where Mi and Ti are the snow cover fraction (SCF) of sample i in the 500-m MCD10A1-TP and 295 

5-km TPSCE snow cover products, respectively. 296 

3. Processing Flowchart of TPSCE 297 

3.1. Flowchart of TPSCE generation 298 

The flowchart of TPSCE generation is presented in Fig. 3. First, by using the quality control flag 299 

(Table 2), the grid cells with valid observations in channels 1–5 were employed in the 300 

pre-TPSCE generation, in which the quality control flags of "1" in bit 7, indicating channels 1–5 301 

that are valid were selected. Second, the cloud detection test was conducted with the help of 302 

elevation to reduce the impacts of cloud in the snow discrimination process. The cloud detection 303 

test and their threshold values are listed in Table 5. The example of cloud detection test over the 304 

study area on December 31, 1981 is presented in Fig. 4. Third, the pre-TPSCE was retrieved 305 

from valid AVHRR surface reflectance observations through the snow discrimination process 306 

using the decision tree approach. The decision tree and threshold values for snow discrimination 307 

are summarized in Fig. 5. The adjustment of NDSI threshold in snow discrimination process is 308 

shown in Fig. 6. Fourth, the grid cells with invalid AVHRR surface reflectance observations and 309 

cloudy were filled by existing daily snow cover products (including MO/YD10C1, IMS, 310 
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JASMES, and PSD) through the composition process according to the priority order shown in 311 

Fig. 7. Fifth, the invalid observations and cloudy pixels after the composition process were filled 312 

by the climatology of the snow cover conditions. Examples of pre-TPSCE and TPSCE over the 313 

study area on December 31, 1981 and January 01, 2015 are displayed in Fig. 8. Finally, the 314 

multi-day TPSCE was produced through aggregation of daily TPSCE. 315 

 316 

Fig. 3. Flowchart of TPSCE generation in this study 317 
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3.2. Cloud detection test 318 

We did not adopt the cloudy and cloud shadow flag that accompanies the AVHRR surface 319 

reflectance CDR. This is because the cloudy flag appears to overestimate cloudy pixels that exist 320 

in the AVHRR surface reflectance CDR compared with cloudy pixels retrieved from the cloud 321 

detection test used by Hori et al. (2017) and previous studies. To resolve this issue, we employed 322 

the cloud detection test and threshold values according to Hori et al. (2017).  323 

Table 5.  324 

Cloud detection tests and their threshold values.  325 

Target switch 

Height 

(m) 

SR1 

(-) 

SR2 

(-) 

SR3 

(-) 

SR1–SR2 

(-) 

NDVI 

(-) 

NDSI 

(-) 

BT11 

(K) 

BT37-BT11 

(K) 

BT11-BT12  

(K) 

A 

on < 3000        ≥ 240 > 8  

on ≥ 3000       ≥ 240 > 15  

B 

on        < 240 > 20  

on    > 0.1 > -0.02  < 0.88    

off      > 0.5  > 288   

0ff        > 310   

on        < 260 > 8  

on     > -0.02   < 310 > 10  

on  > 

0.3 

  > -0.02   < 293 > 9  

on   > 0.4  > -0.03   < 293 > 8 > -1 

on   > 0.4     < 278 > 20 > -1 

on  >  > 0.2    < 263   
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0.3 

off      > 0.5  > 288   

off        > 310   

off > 1000 < 

0.4 

  < -0.04   > 275   

off     < -0.05   > 300   

This table comes from Hori et al. (2017). Target A indicates high and cold land (elevation > 300 m and BT11 < 260 326 

K); Target B indicates other land. The cloud detection test was conducted from the top of the list to the bottom for 327 

each target. If the cloudy flag switch was "on", the pixel was set to cloudy when the threshold tests met the 328 

conditions listed on the right-hand side. If the switch was "off", the pixel identified as cloudy in the previous tests 329 

was reset to clear. NDVI = (SR2-SR1)/(SR2+SR1). NDSI = (SR1-SR3)/(SR1+SR3). 330 

Nine variables calculated from the AVHRR surface reflectance CDR (Table 1) were used in the 331 

cloud detection test, including SR1, SR2, SR3, BT11, differences between SR1 and SR2 332 

(SR1-SR2), differences between BT37 and BT11 (BT37-BT11), differences between BT11 and 333 

BT12 (BT11-BT12), the normalized difference vegetation index (NDVI), and NDSI. The cloud 334 

detection tests and their threshold values are summarized in Table 5. The differences between the 335 

cloudy flag in AVHRR surface reflectance CDR and cloud detection test used by Hori et al. 336 

(2017) are shown in Fig. 4. Compared with cloud masked SR1 using cloudy flag (Fig. 4(c)), 337 

cloud masked SR1 using the cloud detection algorithm (Fig. 4(d)) provides more reasonable 338 

surface reflectance observations.  339 
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 340 

Fig. 4. (a) Raw AVHRR surface reflectance at 640 nm (SR1), (b) quality controlled SR1 (observations are valid), (c) 341 

cloud masked SR1 using cloudy flag, and (d) cloud masked SR1 using the cloud detection algorithm over the study 342 

area on December 31, 1981. 343 

3.3. Snow discrimination process  344 

A snow discrimination process was used to classify the land surface into snow and non-snow. 345 

According to the IGBP land cover classification (Fig. 1), grid cells were classified into four types 346 

at the start of the snow discrimination flow. The variables and thresholds for snow and non-snow 347 

discrimination adopted in the decision tree are shown in Fig. 5, in which the pre-TPSCE is 348 

defined as the combination of Snow-01 to Snow-04. Most of these threshold values in 349 

pre-TPSCE generation were not new but, rather, were combinations of the conventional snow 350 

detection tests employed in previous studies (Hori et al., 2017; Khlopenkov and Trishchenko, 351 

2007; Kidder, 1987; Zhou et al., 2013). 352 
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 353 

Fig. 5. Decision tree and threshold values for snow discrimination using AVHRR surface reflectance CDR 354 

As shown by published studies (Hall et al., 1995; Hall et al., 2002), the NDSI could distinguish 355 

effectively between snow and non-snow by referring to the NDVI, particularly in dense 356 

vegetation regions. In Hall et al (1995), the NDSI was calculated by using the red (approximate 357 

wavelength of 630 nm) and shortwave infrared (1.64 μm) bands. As there are no shortwave 358 

infrared observations around the 1.64 μm wavelength in AVHRR surface reflectance CDR, we 359 

used the reflectance at 3.7 μm for an NDSI-like calculation, following Hori et al. (2017). 360 

Moreover, Hori et al. (2017) used 0.80 as the NDSI threshold to develop JASMES using AVHRR 361 

observations over the NH. Given the complex topography and unique snow properties in the TP, 362 

this NDSI threshold needs to be adjusted before used in the pre-TPSCE generation.  363 
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 364 

Fig. 6. False color images of (a) A and (d) B listed in Table 3. Snow cover extent retrieved by the SNOMAP 365 

algorithm of (b) A and (e) B. Snow cover extent retrieved by AVHRR surface reflectance CDR using an NDSI 366 

threshold of 0.80 of (c) A and (f) B. In the combination of Landsat 5 bands 7, 5, 3 as RGB, snow appears in blue on 367 

the landscape. 368 

The comparisons between the SCE retrieved from Landsat 5 TM images and AVHRR surface 369 

reflectance CDR are shown in Fig. 6. The SNOMAP algorithm (Hall et al, 1995) was applied to 370 

retrieve SCE from Landsat 5 TM images. As presented in Fig. 6(b) and (d), SCE was well 371 

mapped by the SNOMAP algorithm compared to the false color images displayed in Figs 6(a) 372 

and 6(c). The snow cover fraction (SCF) of A and B calculated from Landsat 5 TM images are 54% 373 

and 60%, respectively, whereas the SCF of A and B calculated from AVHRR surface reflectance 374 
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CDR by using 0.80 as the NDSI threshold are 52 % (Fig. 6e) and 56% (Fig. 6f). This means that 375 

using 0.80 as the NDSI threshold may underestimate SCE in the snow discrimination process. To 376 

resolve this issue, we adjusted the NDSI threshold from 0.80 to 0.77 by trial-and-error. In this 377 

case, the SCF of A and B calculated from AVHRR surface reflectance CDR was 55% and 61%, 378 

respectively, which are very similar to those fractions derived from Landsat 5 TM images. 379 

3.4. Composition process 380 

To improve the spatial coverage and reduce the omission error of the pre-TPSCE, a composition 381 

process was carried out to fill gaps caused by invalid observations and cloudy pixels. Several 382 

existing daily snow cover products were used in the composite procedure, including 383 

MO/YD10C1, IMS, JASMES, and PSD. The descriptions of the composite TPSCE are 384 

summarized in Table 6.  385 

Table 6.  386 

Descriptions of composite daily TPSCE. 387 

Value Description Value  Description 

0 Non-snow 5 Pixel is filled by IMS 

1 Pre-TPSCE 7 Pixel is filled by JASMES 

2 Pixel is filled by MOD10C1 11 Pixel is filled by PSD 

3 Pixel is filled by MYD10C1 13 Pixel is filled by Climatology 

The priority order of integrating these snow cover products with the pre-TPSCE and their 388 

contributions in the daily TPSCE are presented in Fig. 7.  389 
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 390 

Fig. 7. Priority order of integrating existing snow cover products with the pre-TPSCE and their contributions to the 391 

composite TPSCE. 392 

The priority order (Fig. 7) of integrating existing daily snow cover products with the pre-TPSCE 393 

was determined according to their spatial resolution. Compared with other ancillary snow cover 394 

data sets, both MOD10C1 and MYD10C1 represent consistent and objective snow estimates 395 

derived from high-resolution optical remote sensing data. Therefore, the MODIS snow cover 396 

data set was used as the first choice in gap filling for the pre-TPSCE. As the JASMES snow 397 

cover data set used both AVHRR and MODIS radiance data, which is repeated by the existing 398 

MODIS daily snow cover data set, we adopted only the JASMES data derived from AVHRR 399 

GAC radiance data during 1981–2008 in the composition process. In addition, to fill gaps 400 

induced by invalid observations and cloud contamination after the composite process, we 401 

calculated the climatology of daily snow cover probability for each grid cell by using IMS for the 402 

period 2005–2016. For a given grid cell, the snow cover probability in a given period was 403 
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calculated by the number of years with snow cover divided by the number of years. For gaps that 404 

still exist after the composite process, the climatology of snow cover probability was employed 405 

to discriminate snow from non-snow areas. For grid cells with gaps, the snow cover probability 406 

greater than 50% was masked as snow. Examples of the pre-TPSCE and composite TPSCE on 407 

December 31, 1981 and January 01, 2015 are shown in Fig. 8. 408 

 409 

Fig. 8. Comparisons of (a and c) the pre-TPSCE and (b and d) TPSCE on December 31, 1981 and January 01, 2015 410 

over the study area. 411 

3.5. Aggregation process 412 

In order to compare the TPSCE with the current multi-day snow cover data sets, e.g., the 8-day 413 

MODIS snow cover data set, weekly NHSCE data set, 5-day AMSR-E SWE products, and other 414 

land surface variables, e.g., 5-day CLARA-SAL surface albedo products and 8-day MODIS leaf 415 

area index products, it was necessary to generate composite SCE data sets at varying temporal 416 
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resolutions. For multi-day TPSCE, only grid cells with snow cover probability greater than or 417 

equal to 50% were defined as snow-covered regions.  418 

4. Snow Discrimination Accuracy of the TPSCE 419 

4.1. Comparisons with ground snow-depth observations 420 

Subject to the data availability of CMA snow-depth observations, the comparison between the 421 

TPSCE and snow-depth observations was carried out during 2000–2014. The climatology of Dd, 422 

calculated from the TPSCE and 72 ground snow-depth observations across the TP for the period 423 

2000–2014 is shown in Fig. 9.  424 

 425 

Fig. 9. Climatology of snow duration days Dd calculated from (a) 72 in situ snow-depth observations, and (b) the 426 
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TPSCE across the TP for the period 2000–2014. (c) Comparisons between the climatology of Dd calculated from the 427 

TPSCE and in situ observations. (d) Error distribution frequency of Dd calculated from the TPSCE across the TP for 428 

the period 2000–2014. 429 

Fig. 9(a) shows the spatial patterns of the 15-year climatology of Dd over the CMA-covered 430 

stations during 2000–2014. There are clear altitudinal gradient patterns for Dd from low to high 431 

altitudes. At most sites, the observed Dd is consistent with the TPSCE-retrieved Dd results 432 

(Fig. 9(b)), with an R2 value of 0.80 at the 99% significant level. However, the bias in the 433 

TPSCE-retrieved Dd and the observed Dd is positive, with a value of 3.93 days (Fig. 9(c)), which 434 

means that the TPSCE tends to overestimate actual Dd across the TP during 2000–2014. 435 

Moreover, as shown in Fig. 9(c), TPSCE-retrieved Dd is higher than the ground observed Dd, 436 

particularly in the lower end of the Dd scale. These phenomena were caused mainly by the low 437 

spatial resolution of the TPSCE, which provide the averaged Dd value at the pixel scale. As the 438 

spatial resolution of the TPSCE is limited, the minima units in the TPSCE-retrieved Dd are pixels 439 

at 0.05°, which cannot catch and reflect entirely the actual (real) Dd at a specific spot location. 440 

The error distribution frequency of the differences between the TPSCE-retrieved Dd and the in 441 

situ observed Dd (TPSCE-retrieved Dd minus in situ observed Dd) is shown in Fig. 9(d). The 442 

overestimated Dd accounts for 65.2% of the total 72 stations used in this study, in which 25% and 443 

18% of the stations distributed an error range between 0–5 days and 5–10 days, respectively. 444 

Previous research has shown that the raw in situ observations would give results that depend 445 

highly on a particular location (latitude and elevation) (Hansen et al., 2010). Such results would 446 
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reflect mostly those accidental snow circumstances, rather than yield meaningful climatology 447 

value of Dd. However, as shown in Fig. 9, Dd retrieved by the TPSCE still skillfully captures the 448 

Dd distributions over the TP. Although the TPSCE generally overestimates Dd across the TP, the 449 

bias (3.93 days) is still acceptable in snow phenology studies compared with other long-term 450 

multi-day snow cover products, such as weekly NHSCE. 451 

4.2. Comparisons with fine-resolution MCD10A1-TP 452 

Subject to the spatial coverage and time span of MCD10A1-TP, the comparison between TPSCE 453 

and fine-resolution MCD10A1-TP was confined to the overlap regions. The climatology of and 454 

changes in SCF calculated from the TPSCE and MCD10A1-TP for the period 2001–2014 across 455 

the TP are shown in Fig. 10. In this study, the changes are expressed as linear trends multiplied 456 

by the time interval.  457 
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 458 

Fig. 10. Climatology of SCF (%) calculated from (a) MCD10A1-TP and (c) TPSCE for the period 2001–2014 across 459 

the TP and each basin for the period 2001–2014. Changes in SCF (%) were calculated from (b) MCD10A1-TP and 460 

(d) TPSCE across the TP and each basin for the period 2001–2014. Black spots in (b) and (d) indicate that the 461 

changes are statistically significant at the 95% level. 462 

The spatial distributions of the SCF climatology derived from MCD10A1-TP (Fig. 10(a)) and the 463 

TPSCE (Fig. 10(c)) are similar during 2001–2014, with high SCF values distributed mainly in 464 

the upper reaches of the Tarim, Indus, Brahmaputra, Salween, and Mekong River basins, and the 465 

low SCF values distributed in the Inner TP and Qaidam River basins. However, compared with 466 

the MCD10A1-TP-derived SCF maps, the SCF values in the high-altitude southern margin of the 467 

Brahmaputra River basin and the western Pamir regions were overestimated in the TPSCE SCF 468 

maps. This overestimation was caused mainly by a relatively low spatial resolution in the newly 469 
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developed TPSCE data set, resulting in overestimated (underestimated) SCF values in regions 470 

with heavy (low) snow distribution. In addition, both MCD10A1-TP and TPSCE are generated 471 

by integrating optical and passive microwave snow data. Thus, uncertainties in the 472 

MCD10A1-TP and TPSCE caused by coarse spatial resolution of passive microwave remote 473 

sensing, ground temperature, snow characteristics and topography (Dai et al., 2017; Tsutsui and 474 

Koike 2012) may also result in the discrepancies between MCD10A1-TP and TPSCE.  475 

Variations in SCF derived from MCD10A1-TP (Fig. 10(b)) and TPSCE (Fig. 10(d)) show 476 

marked spatial differences from 2001 through 2014. Compared with the changes calculated from 477 

MCD10A1-TP, SCF increased not only in the upper reaches of the Yangtze, Mekong, and 478 

Brahmaputra River basins, but also in the northern Inner TP river basins, as shown in the change 479 

maps calculated from the TPSCE. Since the changes calculated from MCD10A1-TP and TPSCE 480 

for the period 2001–2014 are not statistically significant, as indicated in Figs 10(b) and 10(d), 481 

owing to the short time interval, we do not present a detailed analysis of the spatial differences in 482 

this study. However, to explore the detail of the similarities and differences between 483 

MCD10A1-TP and TPSCE, we summarize the comparisons between the annual-mean SCF 484 

calculated from MCD10A1-TP and TPSCE for each basin (Fig. 11), with the RMSE and bias 485 

listed in Table 7.  486 
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487 

Fig. 11. Linear correlations between annual-mean SCF (%) calculated from MCD10A1-TP and TPSCE for the 488 

period 2001–2014 in (a) entire TP, (b) Brahmaputra, (c) Ganges, (d) Hexi, (e) Indus, (f) Mekong, (g) Qaidam, (h) 489 

Salween, (i) Tarim, (g) Yangtze, (k) Yellow, and (l) Inner TP. * indicates the linear correlation is significant at the 95% 490 

level, ** indicates the linear correlation is significant at the 99% level, whereas the others are not significant at the 491 

95% level. 492 

The annual-mean SCF calculated from MCD10A1-TP and TPSCE generally shows positive 493 

linear correlations across the entire region and each basin for the period 2001–2014 (Fig. 11), 494 

with a maximum correlation coefficient (r = 0.85, p < 0.05) in the Mekong River basin and a 495 

minimum correlation coefficient (r = 0.12, p > 0.05) in the Inner TP river basins. For basins with 496 
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snow distribution (e.g., Indus, Mekong, and Salween), the TPSCE could capture the snow 497 

information adequately. However, subject to a 5-km spatial resolution, the TPSCE could not 498 

identify snow cover grid cells accurately in sparse snow cover regions (e.g., Inner TP and 499 

Qaidam). 500 

Table 7. 501 

RMSE and bias for SCF (%) calculated from the TPSCE and MCD10A1-TP across the TP and each basin for the 502 

period 2001–2014. 503 

Basin RMSE (%) Bias (%) Basin  RMSE (%) Bias (%) 

TP 2.15 -0.25 Mekong 2.51 -1.26 

Brahmaputra 2.53 -1.58 Qaidam 3.27 1.52 

Ganges 0.64 0.47 Salween 3.79 -2.80 

Hexi 3.04 0.71 Tarim 2.16 0.92 

Yellow 3.31 -0.93 Inner TP 3.44 -0.37 

Indus 2.14 0.40 Yangtze 2.56 -1.13 

As shown in Table 7, we found large differences in RMSE and bias among the basins across the 504 

TP for the period 2001–2014. The RMSE between the TPSCE SCF series and the MCD10A1-TP 505 

SCF series was 2.15% over the entire TP during the period, ranging from 0.64% in the Ganges 506 

River basin to 3.79% in the Salween River basin. In addition, the bias between the TPSCE SCF 507 

series and the MCD10A1-TP SCF series over the entire TP for the period was -0.25%, with a 508 

maximum underestimated SCF (-2.80%) in the Salween River basin and a maximum 509 

overestimated SCF (1.52%) in the Qaidam River basin.   510 
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5. Cross-comparison between snow cover from TPSCE and other climate variables 511 

5.1. Long-term snow cover changes derived from TPSCE 512 

The long-term snow cover changes derived from the TPSCE and NHSCE from 1982 to 2015 513 

were compared. To match the temporal resolution of the weekly NHSCE data set, the aggregated 514 

weekly TPSCE were used. The climatology and changes in SCF derived from the NHSCE and 515 

TPSCE data sets across the TP for the period 1982–2015 are presented in Fig. 12. Because the 516 

time series of the TPSCE is incomplete due to data missing of AVHRR surface reflectance in 517 

1994, we excluded this year in detection of long-term changes in snow cover and 518 

cross-comparisons with other climate variables in this study. 519 

The 34-year climatology of the annual-mean SCF calculated from NHSCE (Fig. 12(a)) and 520 

TPSCE (Fig. 12(c)) is similar in spatial distribution during 1982–2015. However, the 521 

climatology of the annual-mean SCF calculated from the TPSCE demonstrates more detailed 522 

information on long-term SCF conditions across the TP. Compared with the SCF maps calculated 523 

from TPSCE, the SCF values in the southeast Brahmaputra River basins and northwest Pamirs 524 

were overestimated in the NHSCE SCF maps. In addition to the low spatial resolution of the 525 

NHSCE snow cover products, the definition of snow cover in the NHSCE snow cover products 526 

also contributes to this deviation. According to Helfrich et al. (2007) and Brown and Robinson 527 

(2011), the grid cell was marked as 0 or 1 in the NHSCE snow cover products, with <50% or ≥ 528 

50% snow occurrence probability, respectively. This definition of snow cover in the NHSCE data 529 

set could result in overestimated SCF values in regions with heavy snow but underestimated SCF 530 
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values in regions with patchy snow. This is because NHSCE could only detect grid cells with ≥ 531 

50% snow occurrence probability effectively, whereas the patchy snow could not be identified 532 

well. 533 

 534 

Fig. 12. 34-year climatology of annual-mean SCF (%) across the TP for the period 1982–2015 (excluding 1994), 535 

calculated from (a) NHSCE and (c) TPSCE. The 34-year changes in SCF (%) were calculated from (b) NHSCE and 536 

(d) TPSCE. Black dots in (b) and (d) indicate changes that are significant at the 95% level. 537 

The response of SCF to climate change can be demonstrated well by long-term SCF changes. 538 

Variations in SCF calculated from NHSCE (Fig. 12(b)) and TPSCE (Fig. 12(d)) show large 539 

spatial differences across the TP during 1982–2015, especially in the Pamirs and the southern 540 

margin of the TP. In contrast with a significant SCF decrease in the Brahmaputra River basin, as 541 

shown in Fig. 12(b), the SCF increases in most areas of the Brahmaputra River basin, as shown 542 

in Fig. 12(d). Climatic variables, including temperature and precipitation, were considered the 543 
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contributing factors to these SCF changes. However, previous studies focused mainly on snow 544 

cover changes in northern high latitudes, with the actual conditions of snow cover and the 545 

driving forces in mid-latitudes over a long time span discussed only rarely. To solve the lack of 546 

references in evaluating the reliability of long-term NHSCE and TPSCE, we conducted 547 

cross-comparison as discussed in the following sections. 548 

5.2. Cross-comparison between snow cover and land surface temperature  549 

The cross-comparison between SCF and land surface temperature during 1982–2016 was 550 

conducted (Fig. 13). Based on the annual cycle of SCF over the TP from 2001 to 2014 (Chen et 551 

al., 2017), snow cover increased from September to February, with SCF increasing significantly 552 

in December and January. To compare the changes in temperature and SCF, this study used the 553 

December–January average accumulation season temperature and the minimum temperature.  554 

As shown in Fig. 13(b), the 33-year annual-mean land surface temperature shows a warmer trend 555 

in most of the regions across the TP for the period 1982–2016 (excluding 1994). However, in 556 

contrast with the changes in the annual-mean temperature, both accumulation season temperature 557 

(Fig. 13(c)) and minimum temperature (Fig. 13(d)) show a generally cooler trend across the TP 558 

during 1982–2016 (excluding 1994). This is beneficial to snow accumulation on the ground and 559 

could have resulted in longer-duration snow cover and increased SCF. The cooler accumulation 560 

season temperature and the lower minimum temperature across the TP are consistent partly with 561 

the long-term tendency of large-scale cooling trends in land surface temperature during winter 562 

over mid-latitudes that have been observed since approximately the 1990s (Cohen et al., 2014; 563 
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Cohen et al., 2012). 564 

 565 

Fig. 13. 33-year (a) climatology of annual-mean land surface temperature (°C) and changes in (b) annual-mean land 566 

surface temperature (°C), (c) accumulation season temperature, and (d) minimum land surface temperature across 567 

the TP for the period 1982–2016 (excluding 1994). The correlation coefficient (R) between land surface temperature 568 

and SCF calculated from (e) NHSCE and (f) TPSCE snow cover products. Black dots in (b), (c), and (d) indicate 569 

that changes are significant at the 95% level. Black dots in (e) and (f) indicate that the correlation coefficients are 570 

statistically significant at the 95% level. 571 
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Maps of the correlation between the accumulation season temperature and NHSCE and the 572 

TPSCE are shown in Figs 13(e) and 13(f), respectively. A generally negative correlation between 573 

the accumulation season temperature and SCF is indicated for most regions of the study area, as 574 

shown in Figs 13(e) and 13(f). However, the TPSCE provides superior results in the Pamirs 575 

because of the erroneous positive correlation between the accumulation season temperature and 576 

SCF calculated from the NHSCE. Meanwhile, in the south margin of the TP with high 577 

annual-mean SCF, the NHSCE provides better correlation with accumulation season temperature 578 

compared with the TPSCE. 579 

5.3. Cross-comparison between snow cover and accumulation season precipitation 580 

In addition to the accumulation season temperature, precipitation plays a critical role in snow 581 

accumulation on the ground. The cross-comparison between snow cover and accumulation 582 

season precipitation during 1983–2015 was conducted (Fig. 14). As shown in Fig. 14(b), 583 

accumulation season precipitation increases in most of the central and eastern TP during 1983–584 

2015 (excluding 1994), which is beneficial to snow accumulation on the ground and could have 585 

resulted in deeper snow cover and a longer snow season. This pattern coincides with the previous 586 

findings on large-scale cold snaps, heavy snowfall, and glacier events at middle latitudes since 587 

the 1990s (Cohen et al., 2010; Cohen et al., 2012; Yao et al., 2012). Furthermore, the SCF was 588 

shown to be correlated positively with the accumulation season precipitation, as demonstrated in 589 

Figs 14(c) and 14(d). Compared with Fig. 14(d), the correlation between the accumulation 590 

season precipitation and SCF derived from the NHSCE (Fig. 14(c)) shows poor results in the 591 
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western TP and, particularly, the Pamirs. However, in the eastern and southern margins of the TP, 592 

the performance of the NHSCE is better than the TPSCE.  593 

 594 

Fig. 14. 31-year (a) climatology of annual-mean precipitation (cm) and (b) changes in accumulation season 595 

precipitation across the TP for the period 1983–2015 (excluding 1994). The correlation coefficient (R) between 596 

accumulation season precipitation and SCF is calculated from (c) NHSCE and (d) TPSCE snow cover products. 597 

Black dots in (b) indicate that changes are significant at the 95% level. Black dots in (c) and (d) indicate that the 598 

correlation coefficient is statistically significant at the 95% level. 599 

5.4. Cross-comparison between snow cover and land surface albedo  600 

Land surface albedo has been shown to be related closely with snow cover changes because of 601 

the highly reflective surface of snow cover. The cross-comparison between snow cover and land 602 



41 

 

surface albedo during 1982–2015 was conducted. The 32-year climatology of the annual-mean 603 

land surface albedo and changes across the TP for the period 1982–2015 (excluding 1994) 604 

calculated from the CLARA-SAL are shown in Fig. 15. 605 

 606 

Fig. 15. 32-year (a) climatology of annual-mean land surface albedo and (b) changes across the TP for the period 607 

1982–2015 (excluding 1994). The correlation coefficient (R) between land surface albedo and SCF was calculated 608 

from (c) NHSCE and (d) TPSCE snow cover products. Black dots in (b) indicate that changes are significant at the 609 

95% level. Black dots in (c) and (d) indicate that the correlation coefficient is statistically significant at the 95% 610 

level. 611 

The distribution of 32-year annual-mean land surface albedo across the TP from 1982 to 2015 612 

(excluding 1994) (Fig. 15(a)) is similar to the climatology of the annual-mean SCF distribution 613 

shown in Fig. 12. Moreover, changes in land surface albedo partly represent snow cover changes 614 
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according to Chen et al. (2017). As shown in Fig. 15(b), the land surface albedo shows an 615 

increasing trend in the Pamirs and Brahmaputra River basin, which is the opposite of the 616 

decreasing SCF calculated from the NHSCE snow cover maps (Fig. 12(b)). Moreover, compared 617 

with Fig. 15(c), the correlation coefficients between the land surface albedo and SCF calculated 618 

from the TPSCF were more reasonable, especially in the Pamirs. By comparison with long-term 619 

changes in temperature, precipitation, and land surface albedo, we found that the performance of 620 

the newly developed TPSCE is superior compared with that of the widely used NHSCE snow 621 

cover products in capturing long-term snow cover anomalies across the TP. 622 

6. Summary and Conclusion 623 

The long-term snow cover condition across the TP has not been well documented owing to 624 

limited data availability. Using AVHRR surface reflectance CDR and several existing snow cover 625 

products, we generate a composite daily SCE record of the TP from 1981 to 2016. The newly 626 

developed TPSCE has several advantages in TP snow cover studies, including long time series, 627 

high and temporal spatial resolution, and complete spatial coverage, compared with NHSCE and 628 

GlobSnow with low spatial resolution, Suomi-NPP and MODIS with short time span, and 629 

JASMES with incomplete coverage. This data set facilitates a novel report on the evolution of 630 

snow cover across the TP during three decades (1981 to 2016) as a peculiar mid-latitude 631 

cryosphere. 632 

Validation results of the daily TPSCE against ground snow-depth observations and the 633 

fine-resolution MCD10A1-TP snow cover show high snow discrimination accuracy of the 634 
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TPSCE. Comparisons of SCF distribution and historical change analysis across the entire TP and 635 

nine river basins (e.g. Brahmaputra, Ganges, Hexi, Indus, Mekong, Qaidam, Salween, Tarim, 636 

Yangtze, Yellow, and Inner TP) from 2001 to 2014 provide the RMSE and bias between the 637 

newly developed TPSCE and the fine-resolution MCD10A1-TP in SCF quantification over the 638 

TP, and show that the TPSCE could capture snow distribution skillfully. The cross-comparisons 639 

between the SCF anomaly derived from the TPSCE and changes in land surface temperature, 640 

precipitation, and albedo further show the reliability of the newly developed TPSCE data set. 641 

Compared with the correlation between the SCF calculated from the NHSCE data set and the 642 

land surface temperature, precipitation, and albedo, the SCF calculated from the TPSCE presents 643 

a superior performance.  644 

This long-term composite snow cover data set is suited for studying seasonal snow cover across 645 

the TP and could present a unique opportunity for climatological and hydrological studies on 646 

seasonal snow cover and surface water resource changes in the TP over the past three decades. 647 

However, some issues remain in the newly developed TPSCE data set, such as lower confidence 648 

of snow cover before 2000 compared with that after 2000, few ground snow-depth observations 649 

in regions with heavy snow distribution, and a confined study area limited by the availability of 650 

ancillary data. Cloud contamination is one of the most difficult aspects in snow cover 651 

discrimination when using optical remote sensing images. However, with the utility of historical 652 

passive microwave images and the development of the cloud detection approach, long-term, 653 

high-quality, and fine-resolution snow cover products are expected in the future. 654 
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